Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 69

Full-Text Articles in Mechanical Engineering

Powders For Additive Manufacturing Processes: Characterization Techniques And Effects On Part Properties, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2016

Powders For Additive Manufacturing Processes: Characterization Techniques And Effects On Part Properties, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Powder-bed based Additive Manufacturing is a class of Additive Manufacturing (AM) processes that bond successive layers of powder by laser melting to facilitate the creation of parts with complex geometries. As AM technology transitions from the fabrication of prototypes to end-use parts, the understanding of the powder properties needed to reliably produce parts of acceptable quality becomes critical. Consequently, this has led to the use of powder characterization techniques such as scanning electron microscopy (SEM), laser light diffraction, x-ray photoelectron spectroscopy (XPS), and differential thermal analysis (DTA) to both qualitatively and quantitatively study the effect of powder characteristics on part …


Investigation Of Tensile Properties Of Bulk And Slm Fabricated 304l Stainless Steel Using Various Gage Length Specimens, Sreekar Karnati, I. Axelsen, Frank W. Liou, Joseph William Newkirk Aug 2016

Investigation Of Tensile Properties Of Bulk And Slm Fabricated 304l Stainless Steel Using Various Gage Length Specimens, Sreekar Karnati, I. Axelsen, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The complex solidification dynamics and thermal cycling during Selective Laser Melting process is expected to result in non-equilibrium material characteristics. There is an essential need for characterization techniques which are critical towards the estimation of anisotropies. The current investigation is targeted towards establishing tensile testing methodologies and their relation to differing gage lengths. Dog-bone shaped specimen designs with gage lengths of 1”, 0.3” and 0.12” were employed in this research. The characterization was performed on hot rolled-annealed 304 stainless and SLM fabricated 304L stainless. It was theorized that smaller gage length specimens would be instrumental in mapping material property anisotropy …


Investigation Of Heat-Affected 304l Ss Powder And Its Effect On Built Parts In Selective Laser Melting, Caitlin S. Kriewall, Austin T. Sutton, Ming-Chuan Leu, Joseph William Newkirk, Ben Brown Aug 2016

Investigation Of Heat-Affected 304l Ss Powder And Its Effect On Built Parts In Selective Laser Melting, Caitlin S. Kriewall, Austin T. Sutton, Ming-Chuan Leu, Joseph William Newkirk, Ben Brown

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective laser melting (SLM) is a powder bed based additive manufacturing process in which a layer of powder is laid over the surface of a substrate and a laser with sufficient energy is employed to selectively melt particles to build a part layer by layer. During the SLM process, dark smoke was observed coming off of the powder bed surface where the laser was interacting with powder. This phenomenon resulted from heat-affected powder that was visibly different than the base powder. Since the concentration of the heat-affected powder differs throughout the build chamber as a result of the recirculating argon …


Modeling And Experimental Investigation Of Pre-Mixed Multi-Powder Flow In Fabricating Functional Gradient Material By Laser Metal Deposition Process, Wei Li, Jingwei Zhang, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, W. L. Seufzer Aug 2016

Modeling And Experimental Investigation Of Pre-Mixed Multi-Powder Flow In Fabricating Functional Gradient Material By Laser Metal Deposition Process, Wei Li, Jingwei Zhang, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, W. L. Seufzer

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser Metal Deposition (LMD) is an effective process to fabricate Functionally Graded Material (FGM) from pre-mixed powders. Since the supplied multi-powder directly affects the deposited FGM’s composition, investigation on Pre-Mixed Multi-Powder (PMMP) flow during LMD is greatly needed. This paper presents a comprehensive numerical PMMP flow model. By solving discrete particle force balance equations coupled with continuity equations and momentum equations for carrier gas, the dynamic behavior of PMMP flow through powder feeder tube and out of nozzle was calculated. With this model, the particle sizes of multi-powder were optimized to obtain considered FGM composition. To verify the modeling results, …


Effect Of Powder Particle Size On The Fabrication Of Ti-6al-4v Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen, Lei Yan, Wei Li, Frank W. Liou, Joseph William Newkirk Jan 2016

Effect Of Powder Particle Size On The Fabrication Of Ti-6al-4v Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen, Lei Yan, Wei Li, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct LMD (laser metal deposition) was used to fabricate thin-wall Ti-6Al-4V using the powder mixture of Ti-6 wt.%Al-4 wt.%V. SEM (scanning electron microscopy), OM (optical microscopy) and EDS (energy dispersive spectroscopy) were employed to examine the chemical composition and microstructure of the as-deposited sections. Vickers hardness tests were then applied to characterize the mechanical properties of the deposit samples which were fabricated using pre-mixed elemental powders. The EDS line scans indicated that the chemical composition of the samples was homogenous across the deposit. After significant analysis, some differences were observed among two sets of deposit samples which varied in the …


Freeform Extrusion Fabrication Of Titanium Fiber Reinforced Bioactive Glass Scaffolds, Albin Thomas, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas Aug 2015

Freeform Extrusion Fabrication Of Titanium Fiber Reinforced Bioactive Glass Scaffolds, Albin Thomas, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Although implants made with bioactive glass have shown promising results for bone repair, their application in repairing load-bearing long bones is limited due to their low fracture toughness and fairly fast degradation response in vivo. In this paper, we describe our investigation of freeform extrusion fabrication of silicate based 13-93 bioactive glass scaffolds reinforced with titanium fibers. A composite paste was prepared with 13-93 bioactive glass filled with titanium fibers (~16 µm in diameter and aspect ratio of ~250) having a volume fraction of 0.4 vol. %. This paste was then extruded to fabricate scaffolds with an extrudate diameter …


Effects Of Temperature On Aqueous Freeform Extrusion Fabrication, Jie Li, Ming-Chuan Leu, Greg Hilmas Aug 2015

Effects Of Temperature On Aqueous Freeform Extrusion Fabrication, Jie Li, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An experimental study was conducted to investigate the effect of temperature on ceramic parts produced by paste extrusion based additive manufacturing followed by sintering. A computer-controlled gantry system equipped with a piston extruder was used to extrude aqueous alumina paste. The system includes a temperature control subsystem that allows for freeform extrusion fabrication inside a low-temperature (<0°C) chamber. It can also be used for fabricating parts on a hot plate at ambient or higher temperatures (≥20°C). Test specimens were fabricated from aqueous aluminum pastes at -20°C in the low-temperature chamber and also on the hot plate at 40°C. The minimum angles achievable by these two processes for part fabrication, without use of support material, were compared. Also compared were the relative density and mechanical properties of the parts obtained after sintering. Microstructures were examined via scanning electron microscopy in order to obtain a deeper understanding of the effect of fabrication temperature.


Laser Metal Deposition Of Functionally Gradient Materials From Elemental Copper And Nickel Powders, Sreekar Karnati, Todd E. Sparks, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer Aug 2015

Laser Metal Deposition Of Functionally Gradient Materials From Elemental Copper And Nickel Powders, Sreekar Karnati, Todd E. Sparks, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This work deals with the planning and fabrication of a functionally gradient copper-nickel composition via Laser Metal Deposition (LMD). Various compositions of copper and nickel were made by blending different weight percentages which were then sequentially deposited to fabricate functionally gradient copper-nickel thin-wall structures. Analyses were performed by sectioning the thin-wall samples for metallographic, hardness, X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS) studies. The fabrication was studied for identifying and corroborating the deposited compositions and their corresponding gradients. XRD analyses were performed to identify the crystal structure of the deposit. EDS analysis was instrumental in identifying the variation …


Microstructure And Property Of Tib-Reinforced Ti Alloy Composites By Laser Metal Deposition, Yunlu Zhang, Jingwei Zhang, Frank W. Liou, Joseph William Newkirk Aug 2015

Microstructure And Property Of Tib-Reinforced Ti Alloy Composites By Laser Metal Deposition, Yunlu Zhang, Jingwei Zhang, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

TiB-reinforced Ti alloy composites have been laser deposited with pre-alloyed Ti-6Al4V-1B powder. The microstructure of the as-deposited and heat treated composites have been characterized in detail using scanning electron microscope (SEM). A homogeneous dispersion of needle-like TiB precipitates is formed in the Ti-6Al-4V α/β matrix. TiB precipitates promote formation of small near equaxed α/β grain after β annealing process. The micro-hardness of the laser deposited composites increase 20-30% with 5 vol. % TiB precipitates compared to unreinforced Ti-6Al-4V deposits.


Modeling Of Thermal And Mechanical Behavior Of Zrb₂-Sic Ceramic After High Temperature Oxidation, Jun Wei, Lokeswarappa R. Dharani, K. Chandrashekhara, Greg Hilmas, William Fahrenholtz Nov 2014

Modeling Of Thermal And Mechanical Behavior Of Zrb₂-Sic Ceramic After High Temperature Oxidation, Jun Wei, Lokeswarappa R. Dharani, K. Chandrashekhara, Greg Hilmas, William Fahrenholtz

Mechanical and Aerospace Engineering Faculty Research & Creative Works

No abstract provided.


In Vitro Assessment Of Laser Sintered Bioactive Glass Scaffolds With Different Pore Geometries, Krishna C. R. Kolan, Albin Thomas, Ming-Chuan Leu, Greg Hilmas Aug 2014

In Vitro Assessment Of Laser Sintered Bioactive Glass Scaffolds With Different Pore Geometries, Krishna C. R. Kolan, Albin Thomas, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The pore geometry of bioactive glass scaffolds intended for use in bone repair or replacement is one of the most important parameters that could determine the rate of bone regeneration. The pore geometry would also affect the mechanical properties of the scaffolds and their rate of degradation. Scaffolds with five different architectures, having ~50% porosity, were fabricated with silicate (13–93) and borate (13–93B3) based bioactive glasses using a laser sintering process. An established, late-osteoblasts/early-osteocytes cell line was used to perform cell proliferation tests on the scaffolds. The results indicated that the cells proliferate significantly more on the scaffolds which mimic …


Investigation Of Forged-Like Microstructure Produced By A Hybrid Manufacturing Process, Romy Francis, Joseph William Newkirk, Frank W. Liou Aug 2014

Investigation Of Forged-Like Microstructure Produced By A Hybrid Manufacturing Process, Romy Francis, Joseph William Newkirk, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser Metal Deposition (LMD) is an additive manufacturing technique for manufacturing complex near net shaped components. The grain size of the typical deposition microstructure in case of Ti-6Al-4V can range between 100µm-600µm, which is much larger than that of forged-like microstructures. Friction Stir Processing (FSP) has been investigated as a method for surface modification to form refined microstructure at the surface of the Ti-6Al-4V components manufactured from the LMD method. Integration of FSP and LMD can greatly improve the product properties. Friction stir processing of the laser deposited Ti-6Al-4V deposits was performed and optimum processing parameters were obtained using this …


A Mechanical Testing Methodology For Additive Manufacturing Processes, Sujitkumar Dongare, Todd E. Sparks, Joseph William Newkirk, Frank W. Liou Aug 2014

A Mechanical Testing Methodology For Additive Manufacturing Processes, Sujitkumar Dongare, Todd E. Sparks, Joseph William Newkirk, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Most additive manufacturing processes are layer-by-layer deposition, thus its mechanical properties could be very different than those made from traditional manufacturing processes. This paper summarizes a mini-tensile testing methodology for additive manufacturing. Research concerning the tensile testing of metallic material has been conducted and test methods have been defined. It encompasses the methods for determination of yield strength, yield point elongation, tensile strength, elongation, and reduction of area. The study of positional variation and cooling-rate dependency in case of additive manufacturing proves to be expensive and time consuming with the full-size test specimens. Thus, this paper discussed a technique for …


Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte Aug 2013

Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The porosity and architecture of bone scaffolds, intended for use in bone repair or replacement, are two of the most important parameters in the field of bone tissue engineering. The two parameters not only affect the mechanical properties of the scaffolds but also aid in determining the amount of bone regeneration after implantation. Scaffolds with five different architectures and four porosity levels were fabricated using borate bioactive glass (13-93B3) using the selective laser sintering (SLS) process. The pore size of the scaffolds varied from 400 to 1300 μm. The compressive strength of the scaffolds varied from 1.7 to 15.5 MPa …


Probabilistic Simulation Of Solidification Microstructure Evolution During Laser-Based Metal Deposition, Jingwei Zhang, Frank W. Liou, William Seufzer, Joseph William Newkirk, Zhiqiang Fan, Heng Liu, Todd E. Sparks Aug 2013

Probabilistic Simulation Of Solidification Microstructure Evolution During Laser-Based Metal Deposition, Jingwei Zhang, Frank W. Liou, William Seufzer, Joseph William Newkirk, Zhiqiang Fan, Heng Liu, Todd E. Sparks

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A predictive model, based on a Cellular Automaton (CA) - Finite Element (FE) method, has been developed to simulate microstructure evolution during metal solidification for a laser based additive manufacturing process. The macroscopic FE calculation was designed to update the temperature field and simulate a high cooling rate. In the microscopic CA model, heterogeneous nucleation sites, preferential growth orientation and dendritic grain growth kinetics were simulated. The CA model was able to show the entrapment of neighboring cells and the relationship between undercooling and the grain growth rate. The model predicted the dendritic grain size, structure, and morphological evolution during …


Structural Health Monitoring Data Transmission For Composite Hydrokinetic Turbine Blades, A. Heckman, Joshua L. Rovey, K. Chandrashekhara, Steve Eugene Watkins, Daniel S. Stutts, Arindam Banerjee, Rajiv S. Mishra Jun 2013

Structural Health Monitoring Data Transmission For Composite Hydrokinetic Turbine Blades, A. Heckman, Joshua L. Rovey, K. Chandrashekhara, Steve Eugene Watkins, Daniel S. Stutts, Arindam Banerjee, Rajiv S. Mishra

Mechanical and Aerospace Engineering Faculty Research & Creative Works

No abstract provided.


Freeze-Form Extrusion Fabrication Of Composite Structures, Ming-Chuan Leu, Lie Tang, Bradley K. Deuser, Robert G. Landers, Greg Hilmas, Shi C. Zhang, Jeremy Lee Watts Aug 2011

Freeze-Form Extrusion Fabrication Of Composite Structures, Ming-Chuan Leu, Lie Tang, Bradley K. Deuser, Robert G. Landers, Greg Hilmas, Shi C. Zhang, Jeremy Lee Watts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A Freeze-form Extrusion Fabrication (FEF) process capable of making three-dimensional (3D) parts and structures with graded composite materials is presented in this paper. The process development includes the design and manufacture of a gantry machine with a triple-extruder mechanism and the associated electronics hardware and computer software for fabricating functionally graded parts from multiple aqueous pastes. A rheological behavior study with Al2O3 paste is performed to identify an efficient binder for transforming the paste into a pseudoplastic with a high yield stress. A green part is first fabricated using the triple-extruder FEF machine in a layer-by-layer manner …


Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2011

Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Particle size, binder content and the post-processing schedule are important parameters that affect the microstructure, and, hence, the mechanical properties of parts produced using the indirect selective laser sintering process. 13-93 bioactive glass, with mean particle sizes ranging from 10 μm to 44 μm, is mixed with different amounts of stearic acid binder to fabricate green scaffolds. Through the design of the post-processing schedule, the time required for postprocessing the green scaffolds is reduced from the initial 80 hrs to 12 hrs. The compressive strength varies from 41 MPa for a part with~60% porosity to 157 MPa for a part …


Optimization Of Selective Laser Sintering Process For Fabrication Of Zirconium Diboride Parts, Ming-Chuan Leu, Shashwatashish Pattnaik, Greg Hilmas Aug 2010

Optimization Of Selective Laser Sintering Process For Fabrication Of Zirconium Diboride Parts, Ming-Chuan Leu, Shashwatashish Pattnaik, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective Laser Sintering (SLS) was investigated to fabricate Zirconium Diboride (ZrB2) parts for ultra-high temperature applications. Experiments were conducted to determine values of SLS process parameters (laser power, scan speed, line spacing, and layer thickness) that can be used to build ZrB2 parts with high integrity and sharp geometrical features. A sacrificial plate with a proper number of layers (determined from experimentation) separated from the main part was built in order to reduce thermal gradients when building the main part. The sacrificial plate was found to assist in eliminating cracks in the bottom of the main part. …


Selective Laser Sintering Of 13-93 Bioactive Glass, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2010

Selective Laser Sintering Of 13-93 Bioactive Glass, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Bioactive glasses are more promising than biopolymers in fabricating scaffolds for bone tissue repair because they convert to hydroxyapatite, when implanted in vivo. Both direct and indirect selective laser sintering (SLS) methods of 13-93 bioactive glass were considered in this research to study the feasibility of fabricating scaffolds for bone repair applications. Stearic acid was used as the binder in the indirect method to fabricate the scaffolds. The green scaffolds underwent binder burnout and sintering at various soaking conditions between 675⁰C and 700⁰C, achieving a maximum compressive strength of 23.6 MPa, which is higher than that of the human cancellous …


Computer Aided Contour Profiling Of High Strength Deposits, Sriram Praneeth Isanaka, Amar Bala Sridhar, Frank W. Liou, Joseph William Newkirk Aug 2010

Computer Aided Contour Profiling Of High Strength Deposits, Sriram Praneeth Isanaka, Amar Bala Sridhar, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing processes suffer from the effect of ripples, edge rounding and surface variations. To reduce their effect, ideal process parameters for the laser deposition process were investigated. Also, a new method was identified to analyze deposits by accurately plotting their contours. This was achieved through point cloud data of the deposits generated using coordinate measurement and 3D scanning. Curve fitting was performed on the data in Matlab to generate the contours of the deposit. The intercept values, heights, and contact angle of the curves give an indication of the uniformity of deposits and aid in reducing defects.


Increase Of Heat Transfer To Reduce Build Time In Rapid Freeze Prototyping, Ming-Chuan Leu, Sriram Praneeth Isanaka, Von Richards Aug 2009

Increase Of Heat Transfer To Reduce Build Time In Rapid Freeze Prototyping, Ming-Chuan Leu, Sriram Praneeth Isanaka, Von Richards

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Reduction of part build time in the Rapid Freeze Prototyping (RFP) process, which fabricates a 3D ice part layer-by-layer by depositing and freezing water droplets, has been achieved by increase of heat transfer. Three mechanisms have been experimentally investigated: 1) cooling the substrate, 2) use of forced convection, and 3) use of a chilling plate. Cooling the substrate is effective for parts of small heights but becomes ineffective with increase in part height. Forced convection produced desirable reduction in part build time but with the undesirable formation of frost on the built ice part. The use of chilling plate to …


Evaluation Of Direct Diode Laser Deposited Stainless Steel 316l On 4340 Steel Substrate For Aircraft Landing Gear Application, Tian Fu, Todd E. Sparks, Frank W. Liou, Joseph William Newkirk, Zhiqiang Fan, Syamala Rani Pulugurtha, Jianzhong Ruan, Hsin-Nan Chou Aug 2009

Evaluation Of Direct Diode Laser Deposited Stainless Steel 316l On 4340 Steel Substrate For Aircraft Landing Gear Application, Tian Fu, Todd E. Sparks, Frank W. Liou, Joseph William Newkirk, Zhiqiang Fan, Syamala Rani Pulugurtha, Jianzhong Ruan, Hsin-Nan Chou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

300M steel is used extensively for aircraft landing gears because of its high strength, ductility and toughness. However, like other high-strength steels, 300M steel is vulnerable to corrosion fatigue and stress corrosion cracking, which can lead to catastrophic consequences in the landing gear. Stainless steels offer a combination of corrosion, wear, and fatigue properties. But for an aircraft landing gear application a higher surface hardness is required. A laser cladding process with fast heating and cooling rates can improve the surface hardness. AISI 4340 steel is used as a lower cost alternative to 300M due to its similar composition. In …


Microstructural Characterization Of Diode Laser Deposited Ti-6al-4v, Tian Fu, Zhiqiang Fan, Syamala R. Pulugurtha, Todd E. Sparks, Jianzhong Ruan, Frank W. Liou, Joseph William Newkirk Aug 2008

Microstructural Characterization Of Diode Laser Deposited Ti-6al-4v, Tian Fu, Zhiqiang Fan, Syamala R. Pulugurtha, Todd E. Sparks, Jianzhong Ruan, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser Direct Metal Deposition (DMD) is an effective approach to manufacturing or repairing a range of metal components. The process is a layer-by-layer approach to building up a three dimensional solid object. The microstructure influences mechanical properties of the deposited parts. Thus, it is important to understand the microstructural features of diode laser deposited parts. This paper presents a microstructure analysis of a diode laser deposited Ti-6Al-4V onto a Ti-6Al-4V substrate. laser deposited parts. This paper presents a microstructure analysis of a diode laser deposited Ti-6Al-4V onto a Ti-6Al-4V substrate.


Freeform Fabrication Of Zirconium Diboride Parts Using Selective Laser Sintering, Ming-Chuan Leu, Erik B. Adamek, Tieshu Huang, Greg Hilmas, Fatih Dogan Aug 2008

Freeform Fabrication Of Zirconium Diboride Parts Using Selective Laser Sintering, Ming-Chuan Leu, Erik B. Adamek, Tieshu Huang, Greg Hilmas, Fatih Dogan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using the Selective Laser Sintering (SLS) process, both flexural test bars and 3D fuel injector components have been fabricated with zirconium diboride (ZrB2) powder. Stearic acid was selected as the binder. Values of SLS process parameters were chosen such that the green parts could be built with sharp geometrical features and that the sintered parts could have good mechanical properties. After binder burnout and sintering, the SLS fabricated ZrB2 test bars achieved 80% theoretical density, and the average flexural strength of the sintered samples was 195 MPa. These values demonstrate the feasibility of the SLS process for …


Experimental Investigation Of Effect Of Environment Temperature On Freeze-Form Extrusion Fabrication, Xiyue Zhao, Michael S. Mason, Tieshu Huang, Ming-Chuan Leu, Robert G. Landers, Greg Hilmas, Samuel J. Easley, Michael W. Hayes Aug 2007

Experimental Investigation Of Effect Of Environment Temperature On Freeze-Form Extrusion Fabrication, Xiyue Zhao, Michael S. Mason, Tieshu Huang, Ming-Chuan Leu, Robert G. Landers, Greg Hilmas, Samuel J. Easley, Michael W. Hayes

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing technique that extrudes ceramic loaded aqueous pastes layer by layer below the paste freezing temperature for component fabrication. A computer controlled 3-D gantry system has been developed for the FEF process. The system includes a temperature control subsystem that allows for fabrication of components below the paste freezing temperature. The low temperature environment allows for larger component fabrication. Comparisons in terms of layer thickness, self-sustaining ability, and system response were performed between 0⁰C and -20⁰C for alumina sample fabrications. The minimum deposition angles without use of support material have been determined for …


Modeling And Simulation Of A Laser Deposition Process, Frank W. Liou, Zhiqiang Fan, Heng Pan, Kevin P. Slattery, Mary Kinsella, Joseph William Newkirk, Hsin-Nan Chou Aug 2007

Modeling And Simulation Of A Laser Deposition Process, Frank W. Liou, Zhiqiang Fan, Heng Pan, Kevin P. Slattery, Mary Kinsella, Joseph William Newkirk, Hsin-Nan Chou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A laser deposition process involves the supply of metallic powders into a laser-heated spot where the powder is melted and forms a melt puddle which quickly solidifies into a bead. In order to design an effective system, the laser beam, the powder beam, and their interactions need to be fully understood. In this paper, the laser-material interaction within the melt pool is reported using a multi-scale model: A macroscopic model to model mass, heat, and momentum transfer. Experiments were also conducted to validate the simulation model.


Aqueous-Based Extrusion Fabrication Of Ceramics On Demand, Michael S. Mason, Tieshu Huang, Robert G. Landers, Ming-Chuan Leu, Greg Hilmas, Michael W. Hayes Aug 2007

Aqueous-Based Extrusion Fabrication Of Ceramics On Demand, Michael S. Mason, Tieshu Huang, Robert G. Landers, Ming-Chuan Leu, Greg Hilmas, Michael W. Hayes

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Aqueous-Based Extrusion Fabrication is an additive manufacturing technique that extrudes ceramic slurries of high solids loading layer by layer for part fabrication. The material reservoir in a previously developed system has been modified to allow for starting and stopping of extrusion process on demand. Design pros and cons are examined and a comparison between two material reservoir designs is made. Tests were conducted to determine the optimal deposition parameters for starting and stopping of the extrudate on demand. The collected test data is used to create a process model that describes the relationship between ram velocity and material extrusion rate. …


Numerical Simulation Of The Evolution Of Solidification Microstructure In Laser Deposition, Zhiqiang Fan, Todd E. Sparks, Frank W. Liou, Anand Jambunathan, Yaxin Bao, Jianzhong Ruan, Joseph William Newkirk Aug 2007

Numerical Simulation Of The Evolution Of Solidification Microstructure In Laser Deposition, Zhiqiang Fan, Todd E. Sparks, Frank W. Liou, Anand Jambunathan, Yaxin Bao, Jianzhong Ruan, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A predictive model is developed to simulate the evolution of the solidification microstructure during the laser deposition process. The microstructure model is coupled with a comprehensive macroscopic thermodynamic model. This model simulates dendritic grain structures and morphological evolution in solidification. Based on the cellular automata approach, this microstructure model takes into account the heterogeneous nucleation both within the melt pool and at the substrate/melt interface, the growth kinetics, and preferential growth directions of dendrites. Both diffusion and convection effects are included. This model enables prediction and visualization of grain structures during and after the deposition process. This model is applied …


Fracture Toughness Of Ceramic Moulds For Investment Casting With Ice Patterns, Qingbin Liu, Ming-Chuan Leu, Von Richards Jan 2007

Fracture Toughness Of Ceramic Moulds For Investment Casting With Ice Patterns, Qingbin Liu, Ming-Chuan Leu, Von Richards

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ice patterns can be used to make ceramic investment moulds for metal castings. Owing to the characteristics of ice, the ceramic mould must be made at subzero temperatures and consequently, requires a different formulation than shells built at room temperature. Success of this process depends greatly on the fracture toughness of mould materials. The present paper describes the experimental results of fracture toughness of mould materials processed from different compositions. The Taguchi method was used to reduce the trial runs. The parameters considered included the ratio of fibre containing fused silica and aluminosilicate powders, the volume of binder and the …