Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 2472

Full-Text Articles in Mechanical Engineering

Enhanced Biofouling Properties Of Polyethersulfone Membranes Using Multi-Functional Thermo-Responsive Polymers For Ultra-Filtration Applications, Homa Ghasemi Dec 2023

Enhanced Biofouling Properties Of Polyethersulfone Membranes Using Multi-Functional Thermo-Responsive Polymers For Ultra-Filtration Applications, Homa Ghasemi

Theses and Dissertations

The accumulation and growth of microorganisms on a membrane surface, known as membrane biofouling, has been a significant issue in the effective use of membrane technology for water and wastewater treatment. To overcome these challenges, this study aimed to modify the surface of a polyethersulfone (PES) membrane through the use of a multi-functionalized thermo-responsive polymer. The primary objectives of chemical treatment on membrane surfaces are to enhance surface hydrophilicity and provide anti-bacterial/biocidal properties.To evaluate the effectiveness of these modifications, the performance of the modified membranes was tested for their ability to resist biofouling through filtration of bovine serum albumin (BSA), …


The Effects Of Engineering Summer Camps On Middle And High School Students’ Engineering Interest And Identity Formation: A Multi-Methods Study, Timothy Robinson, Adam Kirn, Jenny Amos, Indira Chatterjee Nov 2023

The Effects Of Engineering Summer Camps On Middle And High School Students’ Engineering Interest And Identity Formation: A Multi-Methods Study, Timothy Robinson, Adam Kirn, Jenny Amos, Indira Chatterjee

Journal of Pre-College Engineering Education Research (J-PEER)

This multi-methods study explores changes in engineering interest and identity of middle and high school students (n = 79) attending introductory-level engineering summer camps at a large western land grant university. Middle school is a critical time when student interest, identity, and subsequently career choice begin to emerge and hence it is important that at this age students are given accurate information about engineering majors in college and future career opportunities in engineering. Data were collected over a period of two years in six summer camps. Three separate populations of middle and high school students participated in the summer …


Head Impact Effects In Small Remotely Piloted Aircraft System (Srpas) Collisions: Gender Specific Risks And Vulnerable Population Protection, Md Farhan Hoque Sagar Nov 2023

Head Impact Effects In Small Remotely Piloted Aircraft System (Srpas) Collisions: Gender Specific Risks And Vulnerable Population Protection, Md Farhan Hoque Sagar

Electronic Thesis and Dissertation Repository

This study focuses on supporting the development of safety regulations for vulnerable populations during drone to head impacts. First, the small female head and neck model was compared to cadaveric data. Then, combined with lab’s previous work, gender-based disparities in head impact responses were highlighted, with small females experiencing higher injury risk metrics, despite lower skull von Mises stress. Beyond small females, children of various ages and their head responses during impacts were also analyzed. In addition to the previously developed quadcopter drone model, a new Mavic Pro drone model was developed, and this model was integrated with human head …


Thermo-Mechanical Instabilities In Next-Generation Friction Materials In High-Speed Sliding Systems, Kingsford Koranteng Nov 2023

Thermo-Mechanical Instabilities In Next-Generation Friction Materials In High-Speed Sliding Systems, Kingsford Koranteng

Electronic Theses and Dissertations

For centuries, the manufacturing industry has incorporated metals like copper into friction materials to enhance thermal properties and minimize thermo-mechanical instabilities (TMI) in high-speed sliding systems. Unfortunately, these metals have adverse environmental effects due to the emission of hazardous particulate matter. As a result, there is a growing movement towards adopting next-generation friction materials as an alternative solution.

The study begins by conducting experimental and numerical investigations to examine the instabilities found in metal-based friction materials. The primary objective is to utilize the insights gained from the investigations to computationally explore effective strategies for mitigating various instabilities that may arise …


Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang Nov 2023

Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang

Electronic Theses and Dissertations

Metallic friction materials currently used in industry may adversely impact the environment. Substitutions for metals in friction materials, on the other hand, can introduce operational safety issues and other unforeseeable issues such as thermal-mechanical instabilities and insufficient strength. In view of it, this dissertation focuses on developing different kinds of materials from simple structure to complex structure and evaluating the material properties with the assistance of molecular dynamics (MD) tools at the nano scale.

First, the concept of the contacted surfaces in friction at the atomic scale was introduced in order to get accurate understanding of the friction process compared …


Applications Of Femtosecond Laser-Processed And Nanoneedle-Synthesized Surfaces To Enhance Pool Boiling Heat Transfer, Peter Efosa Ohenhen Nov 2023

Applications Of Femtosecond Laser-Processed And Nanoneedle-Synthesized Surfaces To Enhance Pool Boiling Heat Transfer, Peter Efosa Ohenhen

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In the present work, the integration of femtosecond laser surface processing (FLSP) with copper hydroxide on hybrid surfaces was examined. The goal was to determine the impact on pool boiling enhancement. The samples for the investigation were fabricated by first functionalizing with FLSP, and the process was then followed by citric acid cleaning (CAC) to eliminate the oxides generated on the copper surface during the FLSP process. After the citric acid cleaning, the samples were immersed in ethanol and subjected to an ultrasonic bath for 25 minutes. This step was performed to eliminate any residual citric acid and loose particles. …


Analysis Of Bombyx Mori Silk And Polyimide Nanofibers, Sabrina Leseul Nov 2023

Analysis Of Bombyx Mori Silk And Polyimide Nanofibers, Sabrina Leseul

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis presents a study on the properties of Bombyx Mori silk nanofibers and polyimide (PI) nanofibers. Firstly, a Bombyx Mori silk solution has been created with degummed silkworm cocoons in order to separate the fibroin and the sericin, the two main proteins of the silk. The fibroin was then centrifuged to remove insoluble particles and stored and 4°C before mixing with hexafluoroisopropanol (HFIP). On the second part, a polyimide solution, made with shavings of polyimide and N,N-dimethylformamide (DMF). Both solutions are then electrospun. Electrospinning parameters are studied. In this way, a part of my thesis has been dedicated to …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding Nov 2023

An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding

LSU Doctoral Dissertations

Additive Manufacturing (AM) has gained attention in recent years due to its unique capabilities in the fabrication of complex parts. As with any new research, there is still a lack of sufficient understanding in the field of additive manufacturing, and further investigation is needed to solve existing problems. Ultimately, the aim is to enable the widespread use of AM components across various industries.

Chapter One provides a brief introduction to the background and current bottlenecks of additive manufacturing technology. Chapter two focuses on the development of high-strength 7075 aluminum alloy (Al7075) for Fused Deposition Modeling and Sintering (FDMS) technology. Al7075 …


Structural Health Monitoring And Repair Of Welded Thermoplastic Composite Joints Using Embedded Multifunctional Films, Wencai Li Oct 2023

Structural Health Monitoring And Repair Of Welded Thermoplastic Composite Joints Using Embedded Multifunctional Films, Wencai Li

LSU Doctoral Dissertations

Thermoplastic composites (TPCs) have gained widespread use, particularly in large or integrated structural components, necessitating effective joining techniques. Fusion bonding (welding) has emerged as a suitable method for TPCs due to their ability to be reshaped through heating and cooling, eliminating the need for mechanical fasteners, long curing times, and extensive surface preparation. Among the welding techniques, ultrasonic welding (USW) stands out for its fast-cycling time and potential for automating large-scale structures, thereby reducing energy consumption. However, limited industrial applications of USW in this context require further knowledge to instill confidence in the process. Moreover, composite structures are susceptible to …


Evolution Of Glassy Carbon Derived From Pyrolysis Of Furan Resin, Josh Kemppainen, Ivan Gallegos, Aaron Krieg, Jacob R. Gissinger, Kristopher E. Wise, Margaret Kowalik, Julia A. King, S. Gowtham, Adri Van Duin, Gregory Odegard Oct 2023

Evolution Of Glassy Carbon Derived From Pyrolysis Of Furan Resin, Josh Kemppainen, Ivan Gallegos, Aaron Krieg, Jacob R. Gissinger, Kristopher E. Wise, Margaret Kowalik, Julia A. King, S. Gowtham, Adri Van Duin, Gregory Odegard

Michigan Tech Publications, Part 2

Glassy carbon (GC) material derived from pyrolyzed furan resin was modeled by using reactive molecular dynamics (MD) simulations. The MD polymerization simulation protocols to cure the furan resin precursor material are validated via comparison of the predicted density and Young's modulus with experimental values. The MD pyrolysis simulations protocols to pyrolyze the furan resin precursor is validated by comparison of calculated density, Young's modulus, carbon content, sp carbon content, the in-plane crystallite size, out-of-plane crystallite stacking height, and interplanar crystallite spacing with experimental results from the literature for furan resin derived GC. The modeling methodology established in this work can …


Additive Manufacturing For Medical Education, Michael Noon Oct 2023

Additive Manufacturing For Medical Education, Michael Noon

College of Engineering Summer Undergraduate Research Program

A growing body of evidence is suggesting that anatomical knowledge, the keystone of many medical specialties, is suffering among new graduates. While a host of reasons are provided, one common thread that many point to is the decline of cadaver dissections in the classroom. Many virtual audio-visual tools are used to address this gap, yet evidence has shown their ineffectiveness. Given this gap, the high degree of flexibility found in additive manufacturing (AM), and the many uses AM has already found in the medical field, we propose its use to fill this gap, allowing for students to learn with touch …


The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris Oct 2023

The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris

Mechanical & Aerospace Engineering Theses & Dissertations

Post-cure through thickness reinforcement is a method used to increase the mechanical properties of composite laminates in the transverse direction. This study conducted a test on skin-stringer structures bonded together in three configurations using an epoxy or thermoplastic adhesive at the interface with reinforcing pins inserted through the laminate thickness located at the edge of the stringer at differing angles between -30º and 30º. The fabrication of these samples in configurations B and C consisted of the use of carbon fiber prepeg laminate at a ply orientation of [02902]2s for the skin and [0 90] …


Fabrication Of Smooth Sac305 Thin Films Via Magnetron Sputtering And Evaluations Of Microstructure, Creep, And Electrical Resistivity, Manish Ojha Oct 2023

Fabrication Of Smooth Sac305 Thin Films Via Magnetron Sputtering And Evaluations Of Microstructure, Creep, And Electrical Resistivity, Manish Ojha

Mechanical & Aerospace Engineering Theses & Dissertations

SAC305 (96.5%Sn-3%Ag-0.5%Cu) is the leading alternative to the traditional Sn-Pb solder eutectic alloy owing to its low melting temperature, better compatibility with other components, and excellent mechanical/structural properties. In the realm of modern electronics, where devices are increasingly miniaturized, the design and characterization of thin solder joints become paramount. The orientation and size of the grains within the solder can influence its ability to withstand mechanical stresses. However, research on SAC thin films remains sparse, and these films present unique challenges and characteristics compared to their bulk counterparts, influenced by factors like interfaces, stresses, thickness, microstructure, and the nature of …


Fatigue Behavior Of Cu-Zr Metallic Glasses Under Cyclic Loading, Nikolai Priezjev Sep 2023

Fatigue Behavior Of Cu-Zr Metallic Glasses Under Cyclic Loading, Nikolai Priezjev

Mechanical and Materials Engineering Faculty Publications

The effect of oscillatory shear deformation on the fatigue life, yielding transition, and flow localization in metallic glasses is investigated using molecular dynamics simulations. We study a well-annealed Cu-Zr amorphous alloy subjected to periodic shear at room temperature. We find that upon loading for hundreds of cycles at strain amplitudes just below a critical value, the potential energy at zero strain remains nearly constant and plastic events are highly localized. By contrast, at strain amplitudes above the critical point, the plastic deformation is gradually accumulated upon continued loading until the yielding transition and the formation of a shear band across …


Establishing Physical And Chemical Mechanisms Of Polymerization And Pyrolysis Of Phenolic Resins For Carbon-Carbon Composites, Ivan Gallegos, Josh Kemppainen, Jacob R. Gissinger, Malgorzata Kowalik, Adri Van Duin, Kristopher E. Wise, S. Gowtham, Gregory Odegard Sep 2023

Establishing Physical And Chemical Mechanisms Of Polymerization And Pyrolysis Of Phenolic Resins For Carbon-Carbon Composites, Ivan Gallegos, Josh Kemppainen, Jacob R. Gissinger, Malgorzata Kowalik, Adri Van Duin, Kristopher E. Wise, S. Gowtham, Gregory Odegard

Michigan Tech Publications, Part 2

The complex structural and chemical changes that occur during polymerization and pyrolysis critically affect material properties but are difficult to characterize in situ. This work presents a novel, experimentally validated methodology for modeling the complete polymerization and pyrolysis processes for phenolic resin using reactive molecular dynamics. The polymerization simulations produced polymerized structures with mass densities of 1.24 ± 0.01 g/cm3 and Young's moduli of 3.50 ± 0.64 GPa, which are in good agreement with experimental values. The structural properties of the subsequently pyrolyzed structures were also found to be in good agreement with experimental X-ray data for the phenolic-derived carbon …


Challenges In Optimization For The Performance On Sustainability Dimensions In Reverse Logistics Social Responsibility, Sumarsono Sudarto, Katsuhiko Takahashi, Mochammad Dewo Aug 2023

Challenges In Optimization For The Performance On Sustainability Dimensions In Reverse Logistics Social Responsibility, Sumarsono Sudarto, Katsuhiko Takahashi, Mochammad Dewo

Makara Journal of Technology

Reverse logistics social responsibility is preferred as the most acceptable solution for addressing the challenges in stakeholders’ debate regarding social responsibility in supply chains because it involves as many actors as possible in the supply chain to perform social responsibility to achieve sustainability. This paper explores the challenges in achieving optimal policies in sustainability dimensions for collection and recycling facilities in reverse logistics. Sustainability dimensions include economic, environmental, and social aspects. The reverse logistics is modeled on System Dynamics, and a simplified statistical analysis using a contour chart is employed in numerical experiments. Results show a narrow area of optimal …


Investigating The Effect Of Bead Geometry On Fiber Orientation And Thermomechanical Properties For Large-Format Extrusion-Based Additive Manufacturing, Joanna F. Keaton Aug 2023

Investigating The Effect Of Bead Geometry On Fiber Orientation And Thermomechanical Properties For Large-Format Extrusion-Based Additive Manufacturing, Joanna F. Keaton

Electronic Theses and Dissertations

In large-format extrusion-based additive manufacturing of polymer composites, the relationship between material properties and processing parameters requires further investigation. This thesis focuses on the relationship between fiber orientation and thermomechanical properties for short fiber-filled thermoplastic polymer systems manufactured by extrusion-based additive manufacturing. Fiber orientation is particularly important in determining the thermomechanical properties of the composite material as properties in the direction of deposition are expected to be higher for highly aligned fibers than randomly aligned fibers. Fiber orientation distribution, which is related to processing parameters and deposition conditions, can be efficiently represented by the orientation tensor. The orientation tensor can …


Mechanical Characterization Of Automated Fiber Placement And Additive Manufacturing Hybrid Composites, Lucan Haviland Aug 2023

Mechanical Characterization Of Automated Fiber Placement And Additive Manufacturing Hybrid Composites, Lucan Haviland

Electronic Theses and Dissertations

This thesis presents the optimization of processing parameters based on the mechanical properties of Continuous Fiber-Reinforced Thermoplastic (CFRTP) Unidirectional (UD) consolidated tapes. The UD tapes were consolidated using an AFP head and a thermoforming press for comparison. The adhesive strength of hybrid parts consisting of CFRTP UD tape bonded to a 3D-printed substrate with the same matrix system were investigated. Large Area Additive Manufacturing (LAAM) was utilized for the 3D-printed parts. Different types of thermoplastic composite materials were explored, including Glass Fiber reinforced Polyethylene Terephthalate Glycol (GF/PETG), Carbon Fiber reinforced Polyethylene Terephthalate Glycol (CF/PETG), Carbon Fiber reinforced Polycarbonate (CF/PC), and …


Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng Aug 2023

Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng

Electronic Thesis and Dissertation Repository

Featured by biocompatibility, high compliance and capacity in sustaining large deformation, dielectric elastomers (DEs) and hydrogels have gained extensive research popularity for their potential applications in the fields of soft robots, biomimetics, tissue engineering, drug delivery, and energy harvesting. The design of such soft and smart material-based devices and structures requires deep understanding and accurate simulation of their constitutive behaviors, which is challenged by their nonlinear material properties due to unique microstructures and multi-physics coupling. Meanwhile, in different application contexts, those structures are also susceptible to different failure modes, imposing further challenges in simulating and predicting their performance. To fulfill …


Additive Manufacturing Of High-Performance Nanolamellar Eutectic High-Entropy Alloys, Jie Ren Aug 2023

Additive Manufacturing Of High-Performance Nanolamellar Eutectic High-Entropy Alloys, Jie Ren

Doctoral Dissertations

Additive manufacturing, also called three-dimensional (3D) printing, is an emerging technology for printing net-shaped components layer by layer for applications in automotive, aerospace, biomedical and other industries. In addition to the vast design freedom offered by this approach, metal 3D printing via laser powder-bed fusion (L-PBF) involves large temperature gradients and rapid cooling and provides exciting opportunities for producing microstructures and mechanical properties beyond those achievable by conventional processing routes. Although these extreme printing conditions enable microstructural refinement to the nanoscale for achieving high strength. However, high-strength nanostructured alloys by laser additive manufacturing often suffer from limited ductility. Eutectic high-entropy …


Influence Of Forming Forces On Torsional, Tensile, And Compressive Deformation Of Paperboard Packages, Arvo Niini, Panu Tanninen, Juha Varis, Ville Leminen Aug 2023

Influence Of Forming Forces On Torsional, Tensile, And Compressive Deformation Of Paperboard Packages, Arvo Niini, Panu Tanninen, Juha Varis, Ville Leminen

Journal of Applied Packaging Research

Paperboard packages were tested mechanically to investigate influence of forming forces on torsional, tensile, and compressive deformation. The packages were paperboard trays which were press formed with different pressing forces and blank holder forces. Deformation of the trays was observed with torsion, compression, and tensile tests. A statistical analysis of test results was conducted to derive optimal forming forces. Increased pressing force yielded desirable deformation characteristics with the trays. Blank holder force had largest impact on the compressive deformation. Interaction of the pressing force and the blank holder force influenced the torsional and the compressive deformation. The optimal forming forces …


Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho Aug 2023

Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho

Open Access Theses & Dissertations

Testing for mechanical properties for additive manufacturing has been based on already existing standards for traditional manufacturing methods. For composites in large scale additive manufacturing there is a research gap in bond strength and fracture toughness for a single layer interface. By using Double cantilever beam Mode I, this thesis manuscript validates testing parameters and protocols to describe the intricacies of ABS matrix 20 wt.% carbon filled composite, specifically on the layer-to-layer interface. Studies suggest that fracture toughness is sensitive to process parameters, like deflection speed and sharpened crack tip at the layer interface of BAAM 3D printed part and …


Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp Aug 2023

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp

All Dissertations

An ongoing challenge in advanced materials design is the development of accurate multiscale models that consider uncertainty while establishing a link between knowledge or information about constituent materials to overall composite properties. Successful models can accurately predict composite properties, reducing the high financial and labor costs associated with experimental determination and accelerating material innovation. Whereas early pioneers in micromechanics developed simplistic theoretical models to map these relationships, modern advances in computer technology have enabled detailed simulators capable of accurately predicting complex and multiscale phenomena.

This work advances domain knowledge via two means: firstly, through the development of high-fidelity, physics-based finite …


Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady Aug 2023

Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady

All Theses

Polylactic acid (PLA) is a biopolymer made from renewable resources such as sugar and corn. PLA filament is a popular material used in Fused Deposition Modeling (FDM) 3D-printing. While this material has many advantages, all the failed parts, support structures, rafts, nozzle tests, and the many prototype iterations during the 3D-printing process contribute to the plastic pollution and release of greenhouse gases. Although PLA is biodegradable, it can take years to degrade in landfills. Instead of throwing away PLA waste and buying new filaments, PLA can be recycled. Amongst the different recycling technologies, mechanical recycling is the most environmentally friendly. …


Fatigue And Fracture Of Electron Beam Melting Ti-6al-4v, William A. Grell Aug 2023

Fatigue And Fracture Of Electron Beam Melting Ti-6al-4v, William A. Grell

Electronic Theses and Dissertations

For applications in the aerospace field, selection of materials for a given design requires an understanding of critical properties, like fatigue and fracture, in addition to static mechanical and physical properties. With the ongoing advancements in metallic additive manufacturing techniques and the interest in applying the process to aerospace applications, there is a clear need to fully characterize properties. Arguably, the most attractive alloy for applications in aerospace is the Ti-6Al-4V alloy. The current dissertation examines the mechanical properties of the alloy, made by the Electron Beam Melting (EBM) Powder Bed Fusion (PBF) method. As illustrated in this work, the …


Life Cycle Energy Assesment Of Advanced Fiber Reinforced Composite Design And Manufacturing Methodologies, Urjit Lad Aug 2023

Life Cycle Energy Assesment Of Advanced Fiber Reinforced Composite Design And Manufacturing Methodologies, Urjit Lad

All Theses

Automotive industry at large is focused on vehicle light-weighting since a 6%-8% increase in fuel efficiency can be achieved with a 10% reduction in vehicle weight [1]. With the growing demand for cost-effective and sustainable light weighting of automobile structures, interest has increased in the application of fiber reinforced plastic (FRP) composites for use in the Body-in-White (BiW), which can account for up to 40% of the total vehicle weight. Traditional FRP composite manufacturing processes like vacuum assisted resin transfer molding, autoclave consolidation or use of automated fiber placement have been successfully used for marine and aerospace applications. However, these …


Chemical And Physical Interaction Mechanisms And Multifunctional Properties Of Plant Based Graphene In Carbon Fiber Epoxy Composites, Daniel W. Mulqueen Aug 2023

Chemical And Physical Interaction Mechanisms And Multifunctional Properties Of Plant Based Graphene In Carbon Fiber Epoxy Composites, Daniel W. Mulqueen

Mechanical & Aerospace Engineering Theses & Dissertations

Graphene has generated substantial interest as a filler due to its exceptional strength, flexibility, and conductivity but faces obstacles in supply and implementation. A renewable, plant-based graphene nanoparticle (pGNP) presents a more accessible and sustainable filler with the same properties as mineral graphenes. In this study, the mechanisms of graphene reinforcement in carbon fiber reinforced plastic (CFRP) were examined, along with the resulting improvements to mechanical strength, resistance to crack propagation, electrical and thermal conductivity at elevated temperatures. pGNP, produced from renewable biomass, was shown to have a graphitic structure with flakes 3-10 layers thick and a median lateral size …


The Effect Of Heat Treatment And Chemical Treatment On Natural Fibre To The Durability Of Wood Plastic Composites – A Review, Nuratiqah Asyiqin Mohd Nasharudin, Nur Fatihah Sulaiman, Nurul Aziemah Mohammad, Wan Nor Raihan Wan Jaafar, Falah Abu Dr., Siti Norasmah Surip Jul 2023

The Effect Of Heat Treatment And Chemical Treatment On Natural Fibre To The Durability Of Wood Plastic Composites – A Review, Nuratiqah Asyiqin Mohd Nasharudin, Nur Fatihah Sulaiman, Nurul Aziemah Mohammad, Wan Nor Raihan Wan Jaafar, Falah Abu Dr., Siti Norasmah Surip

Journal of Materials Exploration and Findings (JMEF)

The application of WPC is not only limited to indoor applications but has been extended to exterior applications where properties of WPC could compromise during service life. WPC was derived from wood fiber of various sizes to reinforce polymers. Wood fiber has the advantage of a cheaper price, being abundantly available, and ease of processing, however, the critical factor is its hydrophilic nature, where moisture absorption is likely to occur. Thus, treatments for reducing the hydrophilicity of wood fibers are applied. By treatment of wood fiber, the surface impurities were removed, leaving the roughened surface of fibers, thus providing a …


The Effect Of Current Density And Hard Chrome Coating Duration On The Mechanical And Tribological Properties Of Aisi D2 Steel, Indah Uswatun Hasanah, Dedi Priadi, Donanta Dhaneswara Jul 2023

The Effect Of Current Density And Hard Chrome Coating Duration On The Mechanical And Tribological Properties Of Aisi D2 Steel, Indah Uswatun Hasanah, Dedi Priadi, Donanta Dhaneswara

Journal of Materials Exploration and Findings (JMEF)

The effect of hard chromium coating on AISI D2's mechanical properties and wear resistance has been investigated using the electrolysis technique with varying current and coating duration. The variations of current used are 0.8 A, 1.2 A, and 1.6 A, while the coating duration used are 300, 600 and 900 seconds. Characterization of the films was conducted using SEM-EDS, and XRD. It can be observed from SEM characterization that the chrome grains resulted from the electroplating process are fine. The XRD identify chrome compund on the surface coating. The highest hardness value was 520.6 HV on a sample with a …