Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2018

Discipline
Institution
Keyword
Publication

Articles 31 - 37 of 37

Full-Text Articles in Semiconductor and Optical Materials

Nanostructured Materials Derived From Metal-Organic Frameworks For Energy And Environmental Applications, Zhiqiang Xie Apr 2018

Nanostructured Materials Derived From Metal-Organic Frameworks For Energy And Environmental Applications, Zhiqiang Xie

LSU Doctoral Dissertations

Nowadays, energy and environmental issues have become the top priority among a series of global issues. Fossil fuels as the dominant source are depleted fast and usually lead to some environmental problems. Heavy metal pollution has posed a severe threat to environment and public health. Metal-organic frameworks (MOFs), as a very promising category of porous materials, have attracted more and more interest in research communities due to their extremely high surface areas, diverse nanostructures and unique properties. To meet the ever-increasing energy demand and tackle the heavy metal pollution in water, MOFs can function as ideal templates to prepare various …


Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson Apr 2018

Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson

Mathematics Theses and Dissertations

Irradiation of semiconductor surfaces often leads to the spontaneous formation of rippled structures at certain irradiation angles. However, at high enough energies, these structures are observed to vanish for all angles, despite the absence of any identified, universally-stabilizing physical mechanisms in operation. Here, we examine the effect on pattern formation of radiation-induced swelling, which has been excluded from prior treatments of stress in irradiated films. After developing a suitable continuum model, we perform a linear stability analysis to determine its effect on stability. Under appropriate simplifying assumptions, we find swelling indeed to be stabilizing at wavenumbers typical of experimental observations. …


The Physical Behavior And Characterization Of Nanoporous Silicon And Dispenser Cathode Surfaces, Tyler Lucius Corey Maxwell Jan 2018

The Physical Behavior And Characterization Of Nanoporous Silicon And Dispenser Cathode Surfaces, Tyler Lucius Corey Maxwell

Theses and Dissertations--Chemical and Materials Engineering

Nanostructured materials have received a surge of interest in recent years since it has become apparent that reducing the size of a material often leads to heightened mechanical behavior. From a fundamental standpoint, this stems from the confinement of dislocations. Applications in microelectromechanical devices, lithium ion batteries, gas sensing and catalysis are realized by combining the improvements in mechanical behavior from material size reduction with the heightened chemical activity offered by materials with a high surface-area-to-volume ratio. In this study, films of nanoporous Si-Mg were produced through magnetron sputtering, followed by dealloying using an environmentally benign process with distilled water. …


Structural, Transport, And Topological Properties Induced At Complex-Oxide Hetero-Interfaces, Justin K. Thompson Jan 2018

Structural, Transport, And Topological Properties Induced At Complex-Oxide Hetero-Interfaces, Justin K. Thompson

Theses and Dissertations--Physics and Astronomy

Complex-oxides have seen an enormous amount of attention in the realm of Condensed Matter Physics and Materials Science/Engineering over the last several decades. Their ability to host a wide variety of novel physical properties has even caused them to be exploited commercially as dielectric, metallic and magnetic materials. Indeed, since the discovery of high temperature superconductivity in the “Cuprates” in the late 1980’s there has been an explosion of activity involving complex-oxides. Further, as the experimental techniques and equipment for fabricating thin films and heterostructures of these materials has improved over the last several decades, the search for new and …


Morphological And Energetic Effects On Charge Transport In Conjugated Polymers And Polymer-Nanowire Composites, Zhiming Liang Jan 2018

Morphological And Energetic Effects On Charge Transport In Conjugated Polymers And Polymer-Nanowire Composites, Zhiming Liang

Theses and Dissertations--Chemistry

Organic semiconductors have wide applications in organic-based light-emitting diodes, field-effect transistors, and thermoelectrics due to the easily modified electrical and optical properties, excellent mechanical flexibility, and solution processability. To fabricate high performance devices, it is important to understand charge transport mechanisms, which are mainly affected by material energetics and material morphology. Currently it is difficult to control the charge transport properties of new organic semiconductors and organic-inorganic nanocomposites due to our incomplete understanding of the large number of influential variables. Molecular doping of π-conjugated polymers and surface modification of nanowires are two means through which charge transport can be manipulated. …


Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick Jan 2018

Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick

Theses and Dissertations (Comprehensive)

Materials at the nanoscale have different chemical, structural, and optoelectrical properties compared to their bulk counterparts. As a result, such materials, called nanomaterials, exhibit observable differences in certain physical phenomena. One such resulting phenomenon called the piezoelectric effect has played a crucial role in miniature self-powering electronic devices called nanogenerators which are fabricated by using nanostructures, such as nanowires, nanorods, and nanofilms. These devices are capable of harvesting electrical energy by inducing mechanical strain on the individual nanostructures. Electrical energy created in this manner does not have environmental limitations. In this thesis, important coupled effects, such as the nonlinear piezoelectric …


Photoluminescence From Gan Co-Doped With C And Si, Mykhailo Vorobiov Jan 2018

Photoluminescence From Gan Co-Doped With C And Si, Mykhailo Vorobiov

Theses and Dissertations

This thesis devoted to the experimental studies of yellow and blue luminescence (YL and BL relatively) bands in Gallium Nitride samples doped with C and Si. The band BLC was at first observed in the steady-state photoluminescence spectrum under high excitation intensities and discerned from BL1 and BL2 bands appearing in the same region of the spectrum. Using the time-resolved photoluminescence spectrum, we were able to determine the shape of the BLC and its position at 2.87 eV. Internal quantum efficiency of the YL band was estimated to be 90\%. The hole capture coefficient of the BLC …