Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2022

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 317

Full-Text Articles in Materials Science and Engineering

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula Dec 2022

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Engineering Order-Disorder Transitions For High-Performance Thermoelectric Fe2val Heusler Alloys, Cory T. Cline Dec 2022

Engineering Order-Disorder Transitions For High-Performance Thermoelectric Fe2val Heusler Alloys, Cory T. Cline

Dartmouth College Ph.D Dissertations

Fe2VAl shows great promise as an eco-friendly and low-cost replacement to conventional low-temperature (250-500 K) thermoelectric materials. Current thermoelectric materials use toxic and expensive elements like Te and Sb, whereas Fe2VAl offers a larger power factor at a lower cost and a reduced risk of environmental pollution. The key issue with Fe2VAl is the alloy’s relatively large thermal conductivity compared to its semiconductor competitors. This thesis aims to investigate a hierarchical approach to reduce lattice thermal conductivity through a preliminary exploration of heavy element substitutions and mechanical deformation, then through probing order-disorder transitions for …


Reduction Of Embodied Carbon In Buildings Through Use Of Low Carbon Strategies And Standardization And Enforcement Of Life Cycle Assessment, Bhargavi Sai Sudhakar Dec 2022

Reduction Of Embodied Carbon In Buildings Through Use Of Low Carbon Strategies And Standardization And Enforcement Of Life Cycle Assessment, Bhargavi Sai Sudhakar

Master's Projects and Capstones

The building and construction industry is energy intensive and as of 2021, this industry is responsible for 37% of the total global greenhouse gas emissions. In previous studies of conventional buildings, the operational energy of a building contributed to 80% and the embodied energy contributed to 20% of the total life cycle energy. With increase in policies and standards that focus on reducing the operational energy, low energy and certified green buildings have emerged where the operational energy has considerably reduced. The relative and absolute share of embodied energy in these energy efficient buildings have increased due to excessive use …


Computational Symmetric Grain Boundary Energy Of Thorium Dioxide, Brendan J. Carroll Dec 2022

Computational Symmetric Grain Boundary Energy Of Thorium Dioxide, Brendan J. Carroll

Honors College Theses

With fossil fuels being depleted at a faster rate than ever, there has been an effort to convert fossil fuel energy to different forms of green energy. One of these forms is nuclear power, and while nuclear power itself is not new, new fuel sources for different types of reactors are being developed. This study aims to do computational experiments on Thorium Dioxide (a potential new nuclear fuel source) to look for the lowest grain boundary energy and what the effect of grain boundary conditions on the energy. Different orientations of the materials grain boundary were modeled and molecular dynamic …


Enhanced Performance Of 3d Electroactive Polymer Transducers Via Hierarchical Structures, Frederick B. Holness Dec 2022

Enhanced Performance Of 3d Electroactive Polymer Transducers Via Hierarchical Structures, Frederick B. Holness

Electronic Thesis and Dissertation Repository

Conjugated polymers (CPs) are a class of polymers that exhibit a change in size or shape in response to electrical stimuli. The unique combination of electrical and mechanical properties facilitates the fabrication of novel devices in a broad range of applications including: sensors, actuators, and lab-on-a-chip systems. The alternating single and double bonds along the polymer chain of CPs enables their electroactive properties but is also responsible for processability associated with CPs that has limited fabrication methods. Recently a photosensitive CP composite enabling additive manufacturing (AM) of 3D CP structures was developed. However, the introduction of a copolymer for mechanical …


High Performance And Low Cost Passivating, Carrier-Selective Contacts For Silicon Photovoltaics, Jannatul Ferdous Mousumi Dec 2022

High Performance And Low Cost Passivating, Carrier-Selective Contacts For Silicon Photovoltaics, Jannatul Ferdous Mousumi

Electronic Theses and Dissertations, 2020-

The world is now focusing on expanding renewable energy sources to reduce the carbon footprint and mitigate climate change. Solar energy is one of the most environment-friendly and fastest-growing renewable energy sources in the present world. While crystalline silicon (c-Si) based devices dominate the global photovoltaics (PV) market with a current share of 95%, it is still challenging to achieve the theoretical efficiency limit of 29.4% with this technology due to a few performance limiting factors. Contact recombination losses are dominant among them which result from the recombination of photo-generated charge carriers due to the presence of defects at the …


A Constitutive Material Model For Simulating Texture Evolution And Anisotropy Effects In Cold Spray., Creston Michael Giles Dec 2022

A Constitutive Material Model For Simulating Texture Evolution And Anisotropy Effects In Cold Spray., Creston Michael Giles

Theses and Dissertations

Cold spray has seen rapid advancement since its inception and has shown significant potential as a method of additive manufacturing. However, the large plastic deformation and repeated heating/cooling cycles that the material undergoes during the cold spray process can result in gradients in material structure and large residual stresses. The purpose of this study is to extend the existing EMMI material model to include anisotropic material response through the use of orientation distribution functions to predict residual stresses and anisotropy resulting from cold spray and similar additive manufacturing processes. Through the use of a finite element simulation, yield surfaces for …


A Study On Early Age Properties Of Concrete For Precast And 3d Printing, Debalina Ghosh Dec 2022

A Study On Early Age Properties Of Concrete For Precast And 3d Printing, Debalina Ghosh

Doctoral Dissertations

Concrete is the second-most consumed material, leading the global Portland cement production of 4.1 billion tons in 2020 and 5-8% of global Carbon dioxide (CO2) emission annually. As with any other material and practice, the construction industry is also ever-changing to meet market demand, evolving technology, and resource limitation. In the case of concrete construction, one of the main concerns is the lack of automation. In the last few decades, some new construction methods have risen to address this concern. Some of these economic and successful practices are precast construction, self-compacting concrete (SCC), and 3D printing of concrete(3DPC). …


Exploring The Effect Of Environmental Degradation On The Shape Memory Properties Of Polymers, Jorge Mario Avila Dec 2022

Exploring The Effect Of Environmental Degradation On The Shape Memory Properties Of Polymers, Jorge Mario Avila

Open Access Theses & Dissertations

A key detriment of the use of polymers by our society is the negative effect this material class has had on the environment. A category of polymers known as shape memory polymers (SMP)s have the ability to return to a programmed original shape form after deformation to a temporary shape by using stimuli such as temperature, electrical pulses and even magnetism. The shape memory effect allows for some polymers to heal if they are damaged. This ability to heal means that components made from these materials can be reused rather than thrown away if they are damaged. The work presented …


Towards The Electronic Response Of Carbon-Based Van Der Waals Heterostructures In A Diamond Anvil Cell, George Thomas Foskaris Dec 2022

Towards The Electronic Response Of Carbon-Based Van Der Waals Heterostructures In A Diamond Anvil Cell, George Thomas Foskaris

UNLV Theses, Dissertations, Professional Papers, and Capstones

The nanoscale regime of materials has been at the forefront of research and interest in condensed matter physics for many years. In a merger of the fields of two-dimensional (2D) materials and high pressure physics, we present an investigation of the electronic response of carbon-based, van der Waals (vdW) heterostructures in a diamond anvil cell (DAC). Combining these fields presents us with the ability to study the characteristics of such systems both optically, and through electrical transport. Properties such as conductance, band structure, and layer number are considered. The samples in this study are assembled using exfoliation and stacking techniques …


Building Structures From Mycelium, Noah M. Brown Dec 2022

Building Structures From Mycelium, Noah M. Brown

Physics

The purpose of this project was to develop a method for creating bricks from mycelium and agricultural waste. The bulk of the research happened in two parts, the first part being a period in which different substrates, strains, and methods were used build the bricks. This research took place in San Luis Obispo and was aided by a group of students in PSC392 under Dr. Pete Schwartz in early 2022. After developing a method for constructing these bricks, the research was moved to St. Thomas, Jamaica, in collaboration with an ecovillage called The Source Farm from July to September. The …


Compositional Effects On The Mechanical Properties And Deformation Mechanisms Of Face-Centered Cubic High-Entropy Alloys, Joshua L. Cicotte Dec 2022

Compositional Effects On The Mechanical Properties And Deformation Mechanisms Of Face-Centered Cubic High-Entropy Alloys, Joshua L. Cicotte

Doctoral Dissertations

High entropy alloys, HEAs, have expanded the compositional spaces of modern metallurgy into highly concentrated and chemically complex alloys, previously believed to be unproductive. With this newfound compositional freedom, comes additional control, allowing for new investigations into previously established mechanisms. To discover new and potentially useful alloys, the HEA field is continually expanding away from the equiatomic solid solutions that dominated early work. The work presented in this dissertation utilizes two, intuitive, pseudo-binary HEA systems to investigate compositional effects on solid solution strengthening in highly concentrated alloys and twinning and transformation induced plasticity. It furthers the understanding of the mechanical …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere Dec 2022

Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere

All Dissertations

Carbon fibers have the highest strength and modulus among all known fibers and are used as reinforcements in high-performance composites [1]. Carbon fibers also have a very low density relative to metals. Therefore, carbon fibers possess ultrahigh specific strength and modulus, which make them desirable for high-performance light-weight composites. A vast majority of commercial carbon fibers are produced from PAN precursors that are expensive, which limits the use of PAN-derived carbon fibers to aerospace applications (e.g., airplanes). However, for costsensitive applications, there is a need for low-cost, moderate performance carbon fibers. Lignin is a low-cost by-product of pulping and biorefining …


Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin Dec 2022

Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin

Optical Science and Engineering ETDs

The creation of a laser cooled semiconductor device has been a long sought achievement. GaAs-based devices have emerged as a promising candidate for the realization of this goal. Efforts to improve the efficiency of such devices have enabled the material to exhibit external quantum efficiencies (EQE, a measure of the probability that an excitation leads to the emission of a photon) of 99.5\%. Despite this impressive feat, a laser coolable device remains elusive.

To investigate the obstacles to such a device, the material characteristics of GaAs-based double heterostructures (DHS) are theoretically and experimentally examined. Through this study, a GaAs $\vert$ …


Heteroepitaxy Of Gasb On Gaas (111)A For Electron Transport Studies, Madison Drake Dec 2022

Heteroepitaxy Of Gasb On Gaas (111)A For Electron Transport Studies, Madison Drake

Boise State University Theses and Dissertations

III-V semiconductors grown by molecular beam epitaxy (MBE) on (111) surfaces have some interesting electronic properties. For certain materials with a (111)-orientation, the Γ- and L-valleys are reasonably close in energy. This means that it may be possible to take advantage of electron conduction in the L- and Γ-valleys at the same time, allowing us to overcome the so-called “density-of-states bottleneck,” and enable transistors with large drive currents.1 We have investigated this phenomenon in GaSb- and InAs-based 2D electron gases for which the electron effective masses are low.

However, growth of materials with a (111) orientation is typically more …


Deep Learning Of Microstructures, Amir Abbas Kazemzadeh Farizhandi Dec 2022

Deep Learning Of Microstructures, Amir Abbas Kazemzadeh Farizhandi

Boise State University Theses and Dissertations

The internal structure of materials also called the microstructure plays a critical role in the properties and performance of materials. The chemical element composition is one of the most critical factors in changing the structure of materials. However, the chemical composition alone is not the determining factor, and a change in the production process can also significantly alter the materials' structure. Therefore, many efforts have been made to discover and improve production methods to optimize the functional properties of materials. The most critical challenge in finding materials with enhanced properties is to understand and define the salient features of the …


Iron Nanoparticles For Magnetic Imaging Applications, Aleia Williams Dec 2022

Iron Nanoparticles For Magnetic Imaging Applications, Aleia Williams

Masters Theses

Extensive research on iron oxide nanoparticles for various applications including nanomedicine, energy applications, environmental remediation, and magnetic imaging have previously been performed. Many are currently FDA approved as magnetic resonance imaging contrast agents and tracers for magnetic particle imaging applications. Magnetic properties of such materials are crucial to obtain good contrast and resolution. However, studies have shown the magnetic properties of iron oxide nanoparticles are less in comparison to those found in pure iron nanoparticle.

This research involves the synthesis and characterization of iron nanoparticles for applications in magnetic resonance imaging contrast agents, magnetic particle imaging tracers, and therapeutic agents …


Active Rheological And Stiffening Control Of Cementitious Systems For Additive Manufacturing, Abdul Basit Peerzada Dec 2022

Active Rheological And Stiffening Control Of Cementitious Systems For Additive Manufacturing, Abdul Basit Peerzada

All Dissertations

Technological advancements and automation in the last two decades have made additive manufacturing of cementitious systems a reality. Among all the additive manufacturing techniques used for cementitious materials, layer-by-layer extrusion-based printing is the most used technique. For a layer-by-layer printing process, the requirements of cementitious materials vary from those of a conventional construction process. Typically, the cementitious materials are pumped to a print head using a positive-displacement pump. The pumpability of the cementitious material for a specific pumping system depends on its rheological properties. For effective pumping, the yield stress and plastic viscosity of a cementitious system should be low. …


Effects Of Polymer Side-Group Size On Interfacial Mechanics Of Graphene-Polymer Nanocomposites, Grace Brokaw Dec 2022

Effects Of Polymer Side-Group Size On Interfacial Mechanics Of Graphene-Polymer Nanocomposites, Grace Brokaw

All Theses

Graphene-reinforced polymer nanocomposites possess excellent mechanical, thermal, and electrical properties, which make them promising candidates for various applications. Favorable interfacial interactions and mechanics between graphene sheets and polymer matrices are often essential to achieve superior mechanical properties. Nevertheless, it remains largely elusive how molecular features of polymer systems, particularly the side-group size of polymer chains, affect the interfacial mechanics between graphene sheets and polymer matrices, primarily due to challenges in well controlling these features in experiments. On the other hand, exploring their roles in the mechanical properties of graphene-polymer nanocomposites is very expensive to study with all-atomistic molecular dynamics (MD) …


Hierarchical Structure And Material Integration For Electrocatalytic Co2 Reduction, Hamed Mehrabi Dec 2022

Hierarchical Structure And Material Integration For Electrocatalytic Co2 Reduction, Hamed Mehrabi

Graduate Theses and Dissertations

CO2 released by the combustion of fossil fuels is driving significant changes to the earth’sclimate. The natural cycle for removing CO2 from the atmosphere, namely photosynthesis, cannot keep up with the rate at which it is being added. Developing engineering approaches to remove CO2 from the atmosphere is becoming essential to reduce these effects. Removal leads to further issues of carbon sequestration and favorable CO2 reuse strategies, including the electrochemical transformation of recovered CO2 to useful products such as fuels and materials. Copper is an important electrocatalyst for the CO2 reduction reaction (CO2RR) because of its unique capability for producing …


A Study On Interactions Between Metal-Organic Frameworks And Biological Materials, Josh Phipps Dec 2022

A Study On Interactions Between Metal-Organic Frameworks And Biological Materials, Josh Phipps

Graduate Theses and Dissertations

Metal-organic frameworks or MOFs are an extremely useful tool in many areas of applications. Their popularity in recent years has arisen from their high efficiency in catalytic chemical reactions. This is made possible due to their porous interior and the ability of the MOFs components to be functionalized. These same traits make MOFs excellent for use in protein encapsulation or immobilization and have the potential to become excellent drug carriers. Their development in this utilization has been limited dramatically compared to MOFs chemical applications. This is due in part to the nature of biological processes taking longer to study, but …


Effects Of Surface Noise On Printing Artifacts: An Artistic Approach To Hiding Print Artifacts, Samuel New Dec 2022

Effects Of Surface Noise On Printing Artifacts: An Artistic Approach To Hiding Print Artifacts, Samuel New

All Theses

This research focuses on improving the quality of Fused Filament Fabrication (FFF) 3D printing by using fractal noise to mask certain print artifacts (e.g. layer lines and stair-stepping). The use of textures is quite common in digital sculpting for aesthetic reasons. This study focuses on finding specific textures that minimize visible 3D print artifacts.


Characterization Of Losses In Superconducting Radio-Frequency Cavities By Combined Temperature And Magnetic Field Mapping, Ishwari Prasad Parajuli Dec 2022

Characterization Of Losses In Superconducting Radio-Frequency Cavities By Combined Temperature And Magnetic Field Mapping, Ishwari Prasad Parajuli

Physics Theses & Dissertations

Superconducting radio-frequency (SRF) cavities are one of the fundamental building blocks of modern particle accelerators. To achieve the highest quality factors (1010-1011), SRF cavities are operated at liquid helium temperatures. Magnetic flux trapped on the surface of SRF cavities during cool-down below the critical temperature is one of the leading sources of residual RF losses. Instruments capable of detecting the distribution of trapped flux on the cavity surface are in high demand in order to better understand its relation to the cavity material, surface treatments and environmental conditions. We have designed, developed, and commissioned two novel …


Assembly Of Ceramic Particles In Aqueous Suspensions Induced By High-Frequency Ac Electric Field, James E. John Iv Dec 2022

Assembly Of Ceramic Particles In Aqueous Suspensions Induced By High-Frequency Ac Electric Field, James E. John Iv

Mechanical & Aerospace Engineering Theses & Dissertations

Ceramic materials processed using colloidal methods have been the focus of a great deal of research aimed at tailoring the final structure and microstructure of the finished ceramic sample. To this end, various external field effects have been investigated to modify the suspension microstructure without manipulating the ceramic particles directly. In a previous work in the field of ice templating it has been shown that AC electric fields are able to produce microstructural changes in ice templated ceramics that have significantly improved the final mechanical properties. However, the mechanisms for this process are still not well understood in ceramics.

To …


Iron Phosphate Glass For The Immobilization Of Dehalogenated Salt Waste, Matthew Aaron Page Dec 2022

Iron Phosphate Glass For The Immobilization Of Dehalogenated Salt Waste, Matthew Aaron Page

All Theses

Electrochemical reprocessing can be used to recycle presently stored nuclear fuel and consists of dissolving that used fuel in molten salt and the waste produced from these processes is a small amount of a high-level salt waste. Vitrification has been selected as the primary means of safely disposing high and low level radioactive waste. This is due to glass’ ability to incorporate many elements within its matrix, and it is chemically durable with the addition of network formers and other glass forming chemicals. With over 90,000 tonnes of nuclear waste in the United States, the avoidance of additional steps required …


An Application Of Optimized Bistable Laminates As A Low Velocity, Low Impact Mechanical Deterrent, Graham Lancaster Dec 2022

An Application Of Optimized Bistable Laminates As A Low Velocity, Low Impact Mechanical Deterrent, Graham Lancaster

All Theses

This research considers the problem of using bistable laminates as a mechanical deterrent to the impending impact of a particle. The structure will be controlled through an algorithm that will utilize piezoelectric devices to activate them in unison with the bistable laminate to successfully deter. A novel experimental setup will be constructed to ensure that the bistable laminate stays fixed when acting as a mechanical deterrent. Piezoelectricity is the main driving force of the bistable laminate to morph and this study will use a Macro Fiber Composite (MFC) actuator that contains piezoelectric ceramic rods in a patch to transfer electrical …


Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle Dec 2022

Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle

Masters Theses

Current orthopedic implants are overwhelmingly composed from metallic materials. These implants show superior mechanical properties, but this can additionally result in stress shielding due to a modulus mismatch between the bone tissue and implanted device. Polymeric implants reduce this stress shielding effect but have much lower mechanical properties, limiting their use. Polylactic acid (PLA) is a widely used biodegradable thermoplastic polymer, however, its use has been limited by the polymer’s mechanical properties and rapid loss of strength during degradation in vivo. Polyether-ether-ketone (PEEK) is another common biocompatible polymer , with chemical and mechanical properties which make it a popular alternative …


Characterization Of An Amine-Thiol Cosolvent System : Ethylenediamine And Mercaptoethanol, Fernanda Giongo Fernandes Dec 2022

Characterization Of An Amine-Thiol Cosolvent System : Ethylenediamine And Mercaptoethanol, Fernanda Giongo Fernandes

Legacy Theses & Dissertations (2009 - 2024)

Since its introduction, the amine-thiol cosolvent system has been successfully utilized for the deposition of various thin-film devices, but its mechanism of action is still uncertain. Herein, we have attempted to dissect some of the chemical characteristics of amine-thiol cosolvents, with a special interest taken towards a mixture of ethylenediamine (en) and mercaptoethanol (ME). Conductivity was measured for multiple amine-thiol combinations at different ratios to determine extent of ionization in solution, with en-ME having one of the highest solution conductivities. Exposing the solution to air for several days was found to decrease the conductivity of en-ME, indicating the formation of …


Seeing The Big Picture: System Architecture Trends In Endoscopy And Led-Based Hyperspectral Subsystem Intergration, Craig M. Browning Dec 2022

Seeing The Big Picture: System Architecture Trends In Endoscopy And Led-Based Hyperspectral Subsystem Intergration, Craig M. Browning

<strong> Theses and Dissertations </strong>

Early-stage colorectal lesions remain difficult to detect. Early development of neoplasia tends to be small (less than 10 mm) and flat and difficult to distinguish from surrounding mucosa. Additionally, optical diagnosis of neoplasia as benign or malignant is problematic. Low rates of detection of these lesions allow for continued growth in the colorectum and increased risk of cancer formation. Therefore, it is crucial to detect neoplasia and other non-neoplastic lesions to determine risk and guide future treatment. Technology for detection needs to enhance contrast of subtle tissue differences in the colorectum and track multiple biomarkers simultaneously. This work implements one …