Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Discipline
Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 5752

Full-Text Articles in Materials Science and Engineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Effects Of Polymer-Nanoparticle Interactions On The Dynamics Of Attractive Polyhedral Oligomeric Silsesquioxane Nanocomposites, Walter W. Young Mar 2024

Effects Of Polymer-Nanoparticle Interactions On The Dynamics Of Attractive Polyhedral Oligomeric Silsesquioxane Nanocomposites, Walter W. Young

Doctoral Dissertations

Polyhedral oligomeric silsesquioxane (POSS) had long been recognized as a critical building block for inorganic-organic hybrid materials with unique and desirable properties and performance. Through synthesis and characterization of polymer/POSS nanocomposites, direct insights into the significant effects of the polymer/POSS interactions on the resulting material properties are obtained. Random copolymers of a hydrogen-bond accepting monomer and a non-interacting monomer are synthesized and loaded with a model amine-functionalized hydrogen bond donating POSS molecule via solution casting, to create a material with well-controlled dynamical heterogeneity. The increase in the glass transition temperature (Tg) of these materials is found to strongly depend on …


Assessing Adoption Barriers Of Sustainable Packaging In Egypt, Carol Ramses Morgan Feb 2024

Assessing Adoption Barriers Of Sustainable Packaging In Egypt, Carol Ramses Morgan

Theses and Dissertations

Sustainable packaging has become an essential part of business decisions and corporate directions. With the rise of environmental damages due to improper waste management and unsustainable practices, businesses have a major responsibility to analyze their products’ life cycles and redesign them with sustainability in mind. Applying sustainable packaging could save companies large amounts of resources, therefore cutting costs, while also achieving the legal and social duty as a corporation towards society and the environment. Many developing countries, with specific focus on Egypt, have recently focused on legislative and corporate decisions in order to encourage more sustainable practices. Egypt’s new Waste …


Applicability Of Using Bio-Receptive Concrete For Building Facades In Egypt, Gina Roupheil Feb 2024

Applicability Of Using Bio-Receptive Concrete For Building Facades In Egypt, Gina Roupheil

Theses and Dissertations

The significant increase in carbon dioxide emissions caused by the construction industry is detrimental to our planet. This is rapidly increasing with the urbanization of cities that is gradually taking its toll on the available green spaces, which help in balancing such emissions. Recently, researchers have been trying to make use of bio-receptivity to create biomaterial systems that could be spread on building envelopes and support the growth of small plant species and microorganisms to establish on. Out of those materials, comes the concrete as a promising material for bio-colonization.

Within this context, this study aims at investigating the applicability …


A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi Feb 2024

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave Feb 2024

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


A 3d Imaging-Based Critique Of Wire Arc Additive Manufacturing (Waam) Simulations, Omar Oraby Jan 2024

A 3d Imaging-Based Critique Of Wire Arc Additive Manufacturing (Waam) Simulations, Omar Oraby

Theses and Dissertations

Residual stresses play a critical role in the mechanical behavior and structural integrity of engineered components. Understanding and quantifying these stresses are essential for ensuring the reliable performance and durability of materials and structures. Traditionally destructive methods are used that involve sample sectioning and material removal. However, non-destructive methods have gained popularity due to their advantages in preserving the specimen's integrity for further testing and material waste reduction. Among these techniques, Digital Image Correlation (DIC) stands out as a powerful non-contact and full-field measurement approach. DIC captures displacements and strain distributions by analyzing the deformation of speckle patterns on the …


The Characterization And Nanomechanical Properties Of Microstructurally Complex Systems, Kerry Ann Baker Jan 2024

The Characterization And Nanomechanical Properties Of Microstructurally Complex Systems, Kerry Ann Baker

Theses and Dissertations--Chemical and Materials Engineering

Since the dawn of civilization, the use of metals has played an integral role in the evolution of human society. Over the years, and with the introduction of new engineering and science, we have learned how to combine metals to create new metallic systems. We have expanded our understanding of dealloying and chemical reactions, and, in doing so, we created nanoporous metals. Our use of metals has evolved from basic alloys such as bronze and steel to more complex alloys such as multi-principal element alloys. Nanoporous gold is an advanced metallic system that can be created through the dealloying process. …


Improving Cast Steel Rail Coupler Fatigue Resistance Through Local Wire-Arc Additive Manufacturing, Andrew M. Bunge Jan 2024

Improving Cast Steel Rail Coupler Fatigue Resistance Through Local Wire-Arc Additive Manufacturing, Andrew M. Bunge

Dissertations, Master's Theses and Master's Reports

Every year, thousands of cast-steel railcar couplers suffer from corrosion-initiated fatigue cracking in similar areas of the coupler’s knuckle; between 2015 and 2018 about 90,000 knuckles were replaced, otherwise these couplers would have been at risk for unexpected failures. These types of couplers have been common in industrial use as early as 1932, hence it is desirable for a countermeasure to the fatigue cracking that does not involve significantly altering the geometry or casting process. Wire arc additive manufacturing (WAM) is a developing technology which boasts the ability to produce complex near-net-shape components; however, less attention has been paid to …


Thermomechanical Process Simulation And Quantification Of Nanoscale Precipitation Influencing Ductility And Strength During Alloy Processing, Alyssa Stubbers Jan 2024

Thermomechanical Process Simulation And Quantification Of Nanoscale Precipitation Influencing Ductility And Strength During Alloy Processing, Alyssa Stubbers

Theses and Dissertations--Chemical and Materials Engineering

Experimental process simulation and quantification of microstructure development during processing are challenging due to limitations with machinery temperature capability, inadequate resolution and sampling volume of currently available characterization techniques, and difficulty characterizing material microstructures as close to processing-relevant conditions as possible. This dissertation addresses how process simulation can be performed using Gleeble thermomechanical technologies and how microstructure development during these processing simulations can be quantified both in-situ and ex-situ.

The first portion of this dissertation demonstrates how Gleeble technologies can be applied to simulate complex material processing conditions in order to produce process-property profiles that can be used to inform …


Nickel Superalloy Composition And Process Optimization For Weldability, Cost, And Strength, Sophie A. Mehl Jan 2024

Nickel Superalloy Composition And Process Optimization For Weldability, Cost, And Strength, Sophie A. Mehl

Dissertations, Master's Theses and Master's Reports

To advance sustainability efforts, electric power plants have reduced specific carbon dioxide emissions by increasing operating temperatures and pressures to improve power generation efficiency. The latest improvements are utilized in advanced ultra-supercritical power generation. To meet these operating conditions, nickel superalloys are used in the highest temperature components; however, they are expensive and present weldability challenges. This project aims to experimentally optimize a nickel superalloy to improve material weldability and decrease cost without compromising strength. Three optimized compositions were developed, and their microstructures and mechanical properties were compared to Nimonic 263, a common nickel superalloy in electric power plants. The …


Assessment Of Defect Generation Mechanism In Welding Processes Using Phased Array Ultrasonic Testing (Paut), Caleb D. Williams Jan 2024

Assessment Of Defect Generation Mechanism In Welding Processes Using Phased Array Ultrasonic Testing (Paut), Caleb D. Williams

Honors College Theses

Welding is one of the major and most commonly used methods of material joining in industries around the world. The mechanisms of welding include complicated processes which can cause significant alteration in final properties and quality of the weld compared to the base materials. Due to these physical and chemical processes during the welding processes, defects and flaws can be generated. Observing such flaws over the years, leads engineers and researchers to investigate the methodologies to identify the cause and effect of defects and their effect on the quality of the welds. A better understanding of such parameters helps to …


Modeling Of Asphalt Concrete For Cross-Anisotropic Visco-Elasticity And Heterogeneity, Zafrul Hakim Khan Dec 2023

Modeling Of Asphalt Concrete For Cross-Anisotropic Visco-Elasticity And Heterogeneity, Zafrul Hakim Khan

Civil Engineering ETDs

Asphalt Concrete (AC) is a cross-anisotropic viscoelastic material. This study has developed a methodology to backcalculate the cross-anisotropic properties of the AC layer from the Falling Weight Deflectometer (FWD) sensor and pavement response data from embedded sensors inside a pavement section. This study has also developed a two-way coupled Multiscale Finite Element Model (MsFEM) with Phase Field Fracture (PFF) to study the microstructural heterogeneity and damage of the AC layer based on the actual field loadings. A Finite Difference Time Domain (FDTD) and Machine learning-based backcalculation algorithm were developed to determine the layer thickness and dielectric constant from air-coupled Ground …


Physical Properties Of Copper Niobium Nanolamellar Composites Fabricated By Accumulative Roll Bonding, Jared Justice Dec 2023

Physical Properties Of Copper Niobium Nanolamellar Composites Fabricated By Accumulative Roll Bonding, Jared Justice

Nuclear Engineering ETDs

Nanolamellar composites with high interface density have increased strength due to interfaces serving as barriers to dislocation movement and high radiation damage resistance. However, these interfaces also serve as barriers to electron motion, reducing the electrical resistivity and thermal conductivity. This work seeks to understand the inherent tradeoff between strength and physical properties of nanolamellar composites produced by accumulative roll bonding with layer thickness ranging from 25 nm to 193 nm. The electrical resistivity was investigated over temperatures ranging from 2 K to 300 K. The effect of longitudinal rolling and cross rolling was also investigated. Electrical resistivity results were …


Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler Dec 2023

Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler

Mechanical Engineering ETDs

This study presents a flexible sensor/harvester device to be used in both electromagnetic sensing and energy harvesting applications for smart grids. When a current passes through a wire, the sensor detects the magnetic field created by that current. The sensor magnet interacts with the wire magnetic field resulting in a transfer of energy through the piezoelectric cantilever. Piezoelectric, conductive, magnetic, and magnetostrictive composite thin films were prepared to fabricate this device.

Initially, the magnet of the cantilever was optimized considering its shape, thickness, length, taper angle etc. via both simulations and experiments. Peak to peak voltage versus cantilever position graph …


Analysis Of Loading Rate, Fiber Orientation And Material Composition Through Image Processing And Digital Volume Correlation In High Performance Concrete, Aidan R. Carlson Dec 2023

Analysis Of Loading Rate, Fiber Orientation And Material Composition Through Image Processing And Digital Volume Correlation In High Performance Concrete, Aidan R. Carlson

Electronic Theses and Dissertations

Ultra High Performance Concrete (UHPC) and High Performance concrete (HPC) is characterized by high compressive strength and high toughness. This is achieved through maximizing the particle packing density in the matrix and the use of fibers to reinforce the matrix, increasing the materials toughness. The interactions of fibers and the matrix during loading is quite complex and involves several different energy dissipation mechanisms. The goal of this work and this thesis is to investigate these interactions and identify any changes in material response, and hope that these changes may be useful for the design of UHPC moving forward.

In this …


Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman Dec 2023

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman

Electronic Theses and Dissertations

The use of metal-oxide nanoparticles adsorbents is limited to fixed-bed columns in industrial-scale water treatment applications. This limitation is commonly attributed to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials, or a lack of adsorption capacity. Foams and aerogels derived from cellulose nanomaterials have unique characteristics, such as high porosity and low density, which enables their use in a variety of environmental applications, including water treatment. However, the overall use of cellulose nanomaterial-based foams in various environmental sectors is limited due to the high cost of production associated with time- and …


Thermally Rearranging Polyimide Networks For High-Temperature Applications, William Guzman Dec 2023

Thermally Rearranging Polyimide Networks For High-Temperature Applications, William Guzman

Dissertations

High-performance polymers can retain functional properties when exposed to long-term or short-term durations of harsh conditions, such as mechanical action, at elevated temperatures (>177 °C). A mixture of intramolecular and intermolecular forces of and between polymer chains provide excellent property retention at elevated temperatures. Specifically, the highly aromatic nature of high-performance polymer backbones provides outstanding thermal stability, which is typically attributed to π-π stacking. However, the interrelationship between thermal stability and high aromaticity creates a challenging structure-processing relationship paradigm, which causes poor polymer processability in most high-performance polymers. Herein, it was demonstrated that rationally designing a crosslinking phenylethynyl imide …


Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang Dec 2023

Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang

Doctoral Dissertations

347H austenitic stainless steel exhibits exceptional creep and corrosion resistance, rendering it an exemplary candidate for pipeline materials, particularly in mid- to high-temperature working conditions. However, due to constraints in component dimensions, welding has been chosen as the preferred method for joining pipeline systems extensively employed in nuclear power plants, fossil fuel plants, and petrochemical companies. The welding process entails the accumulation of residual stress during the cooling stage, along with the introduction of microstructure evolution. Moreover, the residual stress field and microstructure continuously evolve under service conditions, thereby intensifying the susceptibility of crack initiation and propagation. The initial residual …


Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella Dec 2023

Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella

Doctoral Dissertations

Glasses are ubiquitous in daily life and have unique properties which are a consequence of the underlying disordered structure. By understanding the fundamental processes that govern these properties, we can modify glasses for desired applications. Key to understanding the structure-dynamics relationship in glasses is the variety of relaxation processes that exist below the glass transition temperature. Though these relaxations are well characterized with macroscopic experimental techniques, the microscopic nature of these relaxations is difficult to elucidate with experimental tools due to the requirements of timescale and spatial resolution. There remain many questions regarding the microscopic nature of relaxation in glass …


3d Experimental Studies Of Temperature And Crystallographic Effects On Creep And Strength In Rock Salt, Amirsalar Moslehy Dec 2023

3d Experimental Studies Of Temperature And Crystallographic Effects On Creep And Strength In Rock Salt, Amirsalar Moslehy

Doctoral Dissertations

Salt domes utilization as storage reservoirs in the energy sector has led to extensive studies on rock salt’s mechanical and geothermal behavior. These important facilities’ safety and serviceability rely on understanding rock salt’s compressive strength and creep behavior under various loading directions, water contents, in-situ stresses, and temperatures. Despite numerous studies on rock salt’s mechanical behavior in the literature, there are still many unanswered questions about rock salt’s behavior. This dissertation was aimed at utilizing state-of-the-art experimental techniques such as 3D synchrotron micro-computed tomography (SMT) and 3D x-ray diffraction (3DXRD) along with hundreds of compression and creep experiments to enhance …


Optimizing The Synthesis Process For Lithium-Ion Sieve Adsorbents: Effect Of Calcination Temperature And Heating Rate On Reaction Efficiency And Performance, Calvin Nyambane Nyarangi Dec 2023

Optimizing The Synthesis Process For Lithium-Ion Sieve Adsorbents: Effect Of Calcination Temperature And Heating Rate On Reaction Efficiency And Performance, Calvin Nyambane Nyarangi

Theses and Dissertations

Processing-structure-property relationships play a crucial role in tuning the performance of materials for a given application in order to attain a suitable set of optimal conditions, therefore, it is imperative to evaluate the parameters of either the synthesis, delithiation, adsorption, and desorption process. Through an orthogonal test design of the solid-state synthesis process, it was determined that a heating rate of 1 ℃/min had consistently higher reaction efficiencies of 68.1 %, 68.6 %, and 72.3 % at the calcination temperatures of 650 ℃, 700 ℃, and 750 ℃ respectively compared to heating rates of 4 ℃/min and 7 ℃/min. Moreover, …


Synergistic Strategies In Sinter-Based Material Extrusion (Mex) 3d Printing Of Copper: Process Development, Product Design, Predictive Maps And Models., Kameswara Pavan Kumar Ajjarapu Dec 2023

Synergistic Strategies In Sinter-Based Material Extrusion (Mex) 3d Printing Of Copper: Process Development, Product Design, Predictive Maps And Models., Kameswara Pavan Kumar Ajjarapu

Electronic Theses and Dissertations

3D printing pure copper with high electrical conductivity and exceptional density has long been challenging. While laser-based additive manufacturing technologies suffered due to copper's highly reflective nature towards laser beams, parts printed via binder-assisted technologies failed to reach over 90% IACS (International Annealed Copper Standard), electrical conductivity. Although promising techniques such as binder jetting, filament, and pellet-based 3D printing that can print copper exist, they however still face difficulties in achieving both high sintered densities and electrical conductivity values. This is due to a lack of comprehensive understanding of property evolution from green to sintered states and the strategies that …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


High Temperature Oxidation Kinetics Of Alumina Forming Steels For Petrochemical Processes, Kao Zoua Yang Dec 2023

High Temperature Oxidation Kinetics Of Alumina Forming Steels For Petrochemical Processes, Kao Zoua Yang

Theses and Dissertations

Petrochemical industries produce 14.33 million barrels of petroleum products a day and by 2023, are expected to produce over a trillion dollars in sales annually. Petroleum is the number one used fuel source and is the raw material used to produce a wide range of petrochemical products including ethylene which is the raw chemical precursors that is crucial to the polymer market. Ethylene is created by the process of cracking ethane and other hydrocarbons in steel reactors at high temperature and potentially oxidizing conditions. The cracking process produces a range of byproducts including a detrimental solid carbon, called coke, which …


Additive Manufacturing Of Magnetic Materials For Electric Motor And Generator Applications, Haobo Wang Dec 2023

Additive Manufacturing Of Magnetic Materials For Electric Motor And Generator Applications, Haobo Wang

Doctoral Dissertations

This work details the research into the 3D Printing, also known as Additive Manufacturing (AM), of both impermanent and permanent magnets. This work also details the research in enabling such AM magnets in electrical machine applications, primarily motors and generators. The AM processes of many types of magnets are described in detail. The material properties of such AM magnets are also described. The two main types of AM magnets that are discussed in detail are AM NdFeB, and AM Silicon Steel. The implementation of AM NdFeB as rotor magnets, and the implementation of AM Silicon Steel as rotor and stator …


Characterizing The Structure And Radiation Resistance Of Weberite-Type Complex Oxides, Igor M. Gussev Dec 2023

Characterizing The Structure And Radiation Resistance Of Weberite-Type Complex Oxides, Igor M. Gussev

Doctoral Dissertations

Weberite-type A3BO7 oxides, where A is a trivalent rare earth and B is a pentavalent element like Ta, have been a focus of research due to the discovery of the weberite-type local atomic arrangement in ceramics with a defect-fluorite structure. Earlier studies primarily examined their long-range structures, leaving gaps in understanding their short-range atomic behavior. This thesis investigates various weberite-type tantalates across all structural scales. There has been debate over the long-range structure of Y3TaO7, a medium-sized rare earth tantalate oxide, particularly regarding its spacegroup symmetry. This work identifies Y3TaO7 …


Modular Composite Sandwich Structures For Thermal And Structural Retrofitting Of Existing Buildings, Marc Al Ghazal Dec 2023

Modular Composite Sandwich Structures For Thermal And Structural Retrofitting Of Existing Buildings, Marc Al Ghazal

Masters Theses

Around 40% of global energy consumption and 30% of worldwide carbon dioxide (CO2) emissions are attributed to buildings. Most of this consumption is dedicated to ensuring thermal comfort. The goal of this research was to develop and field validate retrofit solutions to improve the energy efficiency of buildings. Exterior cladding panels were designed and tested to ensure adequate thermal and structural performance. Sandwich panels (glass fibers reinforced polymer (GFRP) skins and polymeric foam cores) were fabricated using the vacuum assisted resin transfer molding (VARTM) process. Extruded polystyrene (XPS) and polyurethane (PU) foams were compared as core materials through a series …


Developing High-Performance 2d Heterostructured Electrocatalysts And Photocatalysts For Hydrogen Production And Utilizationsts And Photocatalysts For Hydrogen Production And Utilization, Xiaohan Ma Dec 2023

Developing High-Performance 2d Heterostructured Electrocatalysts And Photocatalysts For Hydrogen Production And Utilizationsts And Photocatalysts For Hydrogen Production And Utilization, Xiaohan Ma

All Dissertations

H2 is a pivotal chemical in modern society, not only as a clean energy carrier but also as a versatile chemical reactant. However, traditional hydrogen production and utilization heavily rely on thermocatalysis, which is highly energy-intensive and can result in heavy carbon emission and severe environmental problems. Photocatalysis and electrocatalysis are greener alternatives to thermocatalysis that can capitalize on the renewable sunlight and electricity and thus dramatically reduce energy requirements. However, heterogeneous electro/photocatalysts are still far from application to hydrogen economy due to the lack of design principles that can lead to sufficient efficiency. To address this challenge, the …