Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Materials Science and Engineering

Modeling Phase Behavior And Agglomeration In Polymer Systems Incorporating Complex Architectures: From Bottlebrush To Lysozyme, Sidong Tu Aug 2022

Modeling Phase Behavior And Agglomeration In Polymer Systems Incorporating Complex Architectures: From Bottlebrush To Lysozyme, Sidong Tu

All Dissertations

Using computational modeling, we focus on the phase behavior of multicomponent systems incorporating enzyme and bottlebrush polymers where the agglomeration of multiple components occurs. We start with all-atom molecular dynamics (MD) simulations of lysozyme and polyethylene glycol (PEG) based polymer mixture to understand the mechanisms of preservation of lysozyme bioactivity at high temperatures with addition of PEG-derived bottlebrushes. We show that the PEG part of bottlebrushes phase separates at high temperature and shells the access of water to lysozyme, resulting in the preservation of lysozyme secondary structures. We then developed a coarse-grained model using a Dissipative Particle Dynamics approach to …


New Solid Polymer Electrolytes For Lithium, Sodium, And Calcium-Based Batteries, Francielli Silva Genier Jul 2022

New Solid Polymer Electrolytes For Lithium, Sodium, And Calcium-Based Batteries, Francielli Silva Genier

Dissertations - ALL

The establishment of sustainable energy sources highly depends on efficient storage devices to guarantee a consistent power supply. The growing demand for lithium-ion batteries (LIBs) for this purpose, combined with concerns about lithium availability, has motivated the search for viable storage alternatives, such as sodium and calcium. While several studies have investigated different lithium-free liquid electrolytes, the transport of these alternative ions in their polymer counterparts remains understudied. The advantages of solid polymer electrolytes include the possibility of higher energy density in solid-state devices and the elimination of safety concerns associated with liquid electrolytes, such as flammability, leakage, and dendrite …


Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony Apr 2022

Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony

USF Tampa Graduate Theses and Dissertations

Over the course of the past 80 years, semiconductor devices have become increasingly ubiquitous in everyday life.From constructing mainframes that encompassed entire rooms during the 1940s, to inventing personal computers in the 1980s, to developing progressively faster smartphones and wearable technology in the 2010s, the primary driving force behind the Digital Revolution has been increasing transistor counts, and thus computing power, via incremental improvements in optical lithography. In 1965, Intel co-founder Gordon Moore boldly predicted that the transistor density of semiconductor devices would double approximately every 18-24 months. While this prediction -- now colloquially referred to as Moore's Law -- …