Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Other Materials Science and Engineering

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 911

Full-Text Articles in Materials Science and Engineering

Development And Characterization Of Stable Low-Cost Salt Hydrate-Based Phase Change Materials For Thermal Energy Storage Applications, Damilola Olayinka Akamo May 2023

Development And Characterization Of Stable Low-Cost Salt Hydrate-Based Phase Change Materials For Thermal Energy Storage Applications, Damilola Olayinka Akamo

Doctoral Dissertations

Energy storage technologies are gaining attention due to rising utilization of renewable energy sources. One of the viable energy storage technologies is thermal energy storage (TES) in which system stores and releases thermal energy for various uses. Applications for TES systems include building systems, space heating and cooling, and refrigeration. Several TES systems use phase change materials (PCMs) to operate near-isothermally owing to phase change latent heat. Inorganic salt hydrate PCMs are popular because to their inexpensive cost, high energy density, and near ambient phase transition temperature. However, salt hydrate PCMs have phase separation, low thermal conductivity, and supercooling issues …


Mechanical Characterization Of Additively Manufactured Alloys Compared To Their Wrought Counterparts, Laith A. Alqawasmi Apr 2023

Mechanical Characterization Of Additively Manufactured Alloys Compared To Their Wrought Counterparts, Laith A. Alqawasmi

Mechanical Engineering ETDs

Additive manufacturing is a method of manufacturing based on building parts layer by layer, allowing for more control over shape of the product, therefore reducing machining costs, reducing material waste, faster production times and the ability to build complex engineering design that other manufacturing technologies won’t be able to produce. This research is on the tensile and indentation testing (following ASME standards) of 3D printed Ti-6Al-4V and Inconel 718 built by powder-based direct energy deposition technology. Ti-6Al-4V is an attractive material for the aerospace and aviation industry, and Inconel 718, a nickel-chromium based superalloy, is an attractive material for usage …


Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani Apr 2023

Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani

Optical Science and Engineering ETDs

Intriguing photophysical properties of color centers in diamond make them ideal candidates for many applications from imaging and sensing to quantum networking. In the first part of this work, we have studied the silicon vacancy (SiV) centers in diamond for nanoscale imaging applications. We showed that these centers are promising fluorophores for Stimulated Emission Depletion (STED) microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. In the second part, we built a femtotesla Radio-Frequency (RF) magnetometer based on the diamond nitrogen vacancy (NV) centers and magnetic flux concentrators. We used this sensor to remotely detect Nuclear Quadrupole Resonance …


Development Of Novel Electrodes And Electrolytes For Safer Aqueous Ammonium Ion Batteries With Enhanced Performance., Shelton Farai Kuchena Apr 2023

Development Of Novel Electrodes And Electrolytes For Safer Aqueous Ammonium Ion Batteries With Enhanced Performance., Shelton Farai Kuchena

LSU Doctoral Dissertations

The Lithium-ion battery (LIBs) system has dominated the battery market because of its superior energy and power density. Problems related to LIBs such as safety, scarcity of cobalt and lithium have led researchers to explore alternative battery systems. NH4+ ion is a nonmetal charge carrier with lower molar mass (18 mol g-1) and smaller hydrated ionic size (3.31 Å) which results in excellent electrochemical properties. Furthermore, NH4+ ion has a tetrahedral structure that has no preferred orientation as compared to spherical metal ions giving a different intercalation chemistry based on hydrogen bonding. These properties …


Impact Resistance Of Hybrid Metal-Organic Frameworks/Carbon Fibers Composites, Derek Isaac Espinosa Ramirez Apr 2023

Impact Resistance Of Hybrid Metal-Organic Frameworks/Carbon Fibers Composites, Derek Isaac Espinosa Ramirez

Doctoral Dissertations and Master's Theses

The increase in the use of carbon fiber-reinforced polymers (CFRPs) composites in the aerospace industry generated the need of improving the properties and capabilities of these composites by adding nano-reinforcements to the carbon fibers, also called hybrid fiber reinforced polymer composites. In this study, the energy absorption due to impact at low speed will be tested and simulated in four configurations of CFRPs utilizing the same [0/90]S layout throughout them.

The carbon fiber configurations used during this study are de-sized, acid-activated, metal-organic frameworks (MOF), and carbon nanotubes (CNTs). Nickel (II) Nitrate, Methylimidazole, and Methanol were used to grow the …


Accurate Evaluation Of The Direction-Dependent Mechanical Properties Of Ideal Single Crystals: A Comparative Ab Initio Study, Jaylan Ali Elhalawani Feb 2023

Accurate Evaluation Of The Direction-Dependent Mechanical Properties Of Ideal Single Crystals: A Comparative Ab Initio Study, Jaylan Ali Elhalawani

Theses and Dissertations

The mechanical properties of a single crystal or a grain in a polycrystalline material are highly dependent on the direction of the applied load. Key properties of interest are the Young’s modulus and the Poisson ratio in the small strain limit, and the ideal tensile strength in the large strain regime. Prior atomistic computations of these properties interchangeably used two approaches. In one approach the stress-strain response is explicitly calculated via a numerical tensile test experiment. In the second approach the second order single crystal elastic constants are computed via small deformations and then used in analytical equations to derive …


Atomistic Simulation Studies Of Thin Film Growth And Plastic Deformation In Metals And Metal/Ceramic Nanostructures, Reza Namakian Feb 2023

Atomistic Simulation Studies Of Thin Film Growth And Plastic Deformation In Metals And Metal/Ceramic Nanostructures, Reza Namakian

LSU Doctoral Dissertations

Despite the significant improvements in manufacturing and synthesis processes of metals and ceramics in the past decades, there are still areas in which the procedure is still frequently more of an art or skill rather than a science. Therefore, systematic and combined experimental and computational studies are required to facilitate the development of techniques that offer thorough understanding of the events taking place during manufacturing and synthesis processes. With regard to these issues, it is paramount to address microscale characterizations and atomic scale understanding of the events during fabrication processes. One of the focuses of this study is unraveling fundamental …


Mechanical Design Of A Microwave Imaging Device For Breast Cancer Detection In Mri Scanners, Grace M. Player Jan 2023

Mechanical Design Of A Microwave Imaging Device For Breast Cancer Detection In Mri Scanners, Grace M. Player

Dartmouth College Master’s Theses

This project seeks to develop an updated version of a microwave imaging device for use in conjunction with breast MRI, improving upon existing technology and developing novel concepts for the device. It posits three primary redesign targets for updating the previous system: resizing the system height, making the device more iteration- friendly, and improving the overall manufacturability of the device by replacing custom components with commercially available alternatives. All three of these redesign targets are met in the new design, V2.0. The height is reduced by reducing antenna travel and height, embedding some components, and shortening the tank wall, resulting …


Solid-State Shear Pulverization: A Comprehensive Study On Polymer Processing Technology From A Systematic Innovation Perspective, Tyler A. Will Jan 2023

Solid-State Shear Pulverization: A Comprehensive Study On Polymer Processing Technology From A Systematic Innovation Perspective, Tyler A. Will

Master’s Theses

Solid-state shear pulverization (SSSP) is a continuous and scalable processing technique that imposes mechanochemical changes in polymer-based materials. It has been shown to impart beneficial properties onto homopolymers or create copolymers and composites through continuous fragmentation and fusion. The unique technology employs cold temperature to keep the polymer in the solid state. This thesis investigates industrial polymer processing in the context of real-world applications. This thesis analyzes SSSP using an organized methodology called systematic innovation (SI). SI facilitates problem solving by assisting engineers in conducting root cause analysis around a material and studying the physical setup of the equipment.

This …


Towards A Prototype Paleo-Detector For Supernova Neutrino And Dark Matter Detection, Emilie Marie Lavoie-Ingram Jan 2023

Towards A Prototype Paleo-Detector For Supernova Neutrino And Dark Matter Detection, Emilie Marie Lavoie-Ingram

UNF Graduate Theses and Dissertations

Using ancient minerals as paleo-detectors is a proposed experimental technique expected to transform supernova neutrino and dark matter detection. In this technique, minerals are processed and closely analyzed for nanometer scale damage track remnants from nuclear recoils caused by supernova neutrinos and possibly dark matter. These damage tracks present the opportunity to directly detect and characterize the core-collapse supernova rate of the Milky Way Galaxy as well as the presence of dark matter. Current literature presents theoretical estimates for these potential tracks, however, there is little research investigating the experimental feasibility of this technique. At the University of North Florida, …


Modified Reactive Sputter Deposition Of Titanium Nitride Thin Films Via Hipims With Kick-Pulse And Improvement Of The Structure-Zone Model, Andrew Miceli Jan 2023

Modified Reactive Sputter Deposition Of Titanium Nitride Thin Films Via Hipims With Kick-Pulse And Improvement Of The Structure-Zone Model, Andrew Miceli

UNF Graduate Theses and Dissertations

Direct current (DC) and radio frequency (RF) sputtering methods have been commonplace in industry for several decades and widely studied in literature. Hard films of nitrides, such as titanium nitride (TiN), have been deposited using reactive DC sputtering onto cutting tools and medical devices extensively as well. For these applications, the films require excellent adhesion, high density, and high hardness. High-Power Impulse Magnetron Sputtering (HIPIMS) has emerged over the last several years as a method to produce films with increased density and mechanical properties. Process-structure-property relationships for reactive HIPIMS are not yet well developed. Additionally, conventional HIPIMS suffers from relatively …


Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad Jan 2023

Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad

Dissertations, Master's Theses and Master's Reports

There is an increase in demand for new lightweight structural materials in the aerospace industry for more efficient and affordable human space travel. Polymer matrix composites (PMCs) with reinforcement material as carbon nanotubes (CNTs) have shown exceptional increase in the mechanical properties. Flattened carbon nanotubes (flCNTs) are a primary component of many carbon nanotube (CNT) yarn and sheet materials, which are promising reinforcements for the next generation of ultra-strong composites for aerospace applications. These flCNT/polymer materials are subjected to extreme pressure and temperature during curing process. Therefore there is a need to investigate the evolution of properties during the curing …


Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …


Surface Properties, Work Function, And Thermionic Electron Emission Characterization Of Materials For Next-Generation Dispenser Cathodes, Antonio Mantica Jan 2023

Surface Properties, Work Function, And Thermionic Electron Emission Characterization Of Materials For Next-Generation Dispenser Cathodes, Antonio Mantica

Theses and Dissertations--Chemical and Materials Engineering

A dispenser cathode’s ability to thermionically emit electrons is highly dependent on its material properties, especially those of the surface. Understanding the relationship between surface properties and electron emission, therefore, is vital to reach the next generation of the many vacuum electron devices (VEDs) that rely on the physics of electron emission. In the past century, many techniques have been developed to characterize material surfaces and quantify thermionic emission. These techniques are based on a wide range of different physical phenomena, including measuring photoemission via the photoelectric effect, measuring the electrostatic potential between metals in electrical contact, and current collection …


Development Of High Kinetic Inductance Superconducting Nanowire Devices On High Permittivity Strontium Titanate Substrates, Jamie Timmons Jan 2023

Development Of High Kinetic Inductance Superconducting Nanowire Devices On High Permittivity Strontium Titanate Substrates, Jamie Timmons

UNF Graduate Theses and Dissertations

This thesis involves the fabrication and characterization of devices made from two different superconducting materials: yttrium barium copper oxide (YBCO), a high-TC complex oxide, and niobium nitride (NbN), a low-TC transition metal nitride. Both types of devices are fabricated on strontium titanate substrates, which provides a good lattice match to YBCO and also an extremely large permittivity at low temperature. We demonstrate that wet etching of YBCO thin films via bromine can be a viable microfrabriation technique for the material. Using approximately 35 nm thick epitaxially grown YBCO on an STO substrate, we were able to fabricate YBCO “microwires” with …


Wetting Transition Of Texturized Surfaces, Jenna Stephens Jan 2023

Wetting Transition Of Texturized Surfaces, Jenna Stephens

Williams Honors College, Honors Research Projects

Building on previous research, this project aims to continue the investigation of the wettability of various liquids on a uniform, texturized surface. Different surface energies can impact the wettability of a surface. The surface can be hydrophilic, hydrophobic, or in between. The goal of this project is to research how features of texturized surfaces affect the wetting transition of water, oil, and a mixture of both. Additionally, this project aims to improve the quality of the 3D printed surfaces. The surfaces that will be studied are constructed using UV cured resin 3D printing and are made up of an array …


Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai Jan 2023

Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai

Theses and Dissertations--Chemical and Materials Engineering

Soft, slippery surfaces have gained increasing attention due to their wide range of potential applications, for example in self-cleaning, anti-fouling, liquid collection, and more. One design approach in creating slippery surfaces is using a swollen elastomer, which is a polymer network swollen with a lubricant. This type of surface may be beneficial for longer-term use than standard lubricant-infused surfaces, and provides a versatile surface with tunable mechanical properties. Hence, understanding the physics of soft surface interactions is important for fundamental soft matter physics, biomaterials, adhesives, and coatings. This research experimentally investigates wetting on soft infused networks, with the aim of …


Coolant Capability Study, Christina Grassi Jan 2023

Coolant Capability Study, Christina Grassi

Williams Honors College, Honors Research Projects

The scope of my project is a capability study on different coolants used in manufacturing plants. From this study, the coolant qualities and impact on the manufacturing process will be evaluated in that process and will be documented as a changed standard at the Timken company. Since coolants are sometimes the only fluid on the surface of the parts being manufactured, the rust preventative capabilities will also be studied and evaluated through humidity cabinet testing with and without spiking the coolant with chlorides and sulfates. This project will be carried out on my co-op rotation with the Timken company so …


Intergranular And Pitting Corrosion Mechanisms Of Sensitized Aluminum Alloy Aa5083, Clayton Egleston Jan 2023

Intergranular And Pitting Corrosion Mechanisms Of Sensitized Aluminum Alloy Aa5083, Clayton Egleston

Williams Honors College, Honors Research Projects

The motivation and objectives of this project is to examine the mechanisms of intergranular corrosion (IGC) and pitting corrosion of sensitized AA5083. In this regard, different characterization techniques were used, including optical analysis of microstructure, cyclic potentiodynamic polarization with Tafel fitting, electrochemical impedance spectroscopy with electrical equivalent circuit (EEC) fitting, and potentiostatic current transient monitoring. The transition from IGC to pitting corrosion occurs when the grain boundaries become saturated with the β-phase (Mg2Al3). It was found that AA5083 becomes more vulnerable to pitting corrosion as the degree of sensitization increases.


Dome Tester, Clark Bates, Nikolas M. Kulin Jan 2023

Dome Tester, Clark Bates, Nikolas M. Kulin

Williams Honors College, Honors Research Projects

We are reconfiguring and modifying the previously built dome tester to be more user friendly and mechanically applicable. This has a long-term goal of being a usable teaching tool for manufacturing education within the college of engineering and polymer sciences. The dome tester pushes a metal dome into a clamped sheet of metal to test its forming limits and where necking occurs. We have implemented a better method of viewing the sheet sample as it is being deformed, and improved measuring methods for the distance a sample is deformed. By introducing these changes in conjunction with improved documentation of the …


Investigation Of Microstructurally Dependent Mechanical Properties Of Cold Sprayed Copper Using Correlative Microscopy, Quintin Otto Jan 2023

Investigation Of Microstructurally Dependent Mechanical Properties Of Cold Sprayed Copper Using Correlative Microscopy, Quintin Otto

UNF Graduate Theses and Dissertations

This project employs multi-instrument materials characterization to analyze material made with the “Cold Spray” additive manufacturing process. Cold spray is an emerging additive manufacturing technique with unique benefits resulting from its low temperature adhesion process induced by plastic deformation. Metallic powder collides at high speeds creating three dimensional materials and coatings without the need for melting. Copper cold sprayed specimens were analyzed using a series of imaging techniques to characterize the microstructure at varying levels of detail and magnification. Scanning electron microscopy and electron back scattered diffraction were paired with microhardness testing to generate a correlative comparison between microstructure and …


Aerosol Synthesis Of Tungsten Bronze Particles For Nir Shielding, Hao Tu Jan 2023

Aerosol Synthesis Of Tungsten Bronze Particles For Nir Shielding, Hao Tu

Theses and Dissertations

This dissertation emphasizes the need for efficient energy use in buildings and transportation due to global warming and the energy crisis. It suggests that improving energy efficiency can help reduce energy consumption and emissions and support sustainability. The dissertation introduces various transparent materials that can block near-infrared (NIR) radiation from solar radiation to save energy and money, and it highlights the growing market value of such products. The dissertation compares tungsten bronze with other NIR shielding materials and shows its advantages. The dissertation introduces a cheap and environmentally friendly method for continuously producing tungsten bronze particles via aerosol synthesis. Particle …


Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown Jan 2023

Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown

Graduate Theses, Dissertations, and Problem Reports

Ammonia is critical to supporting human life on earth because of its use as fertilizer. The Haber-Bosch process to produce ammonia has been practiced for over 100 years. This process operates at high pressure and temperature to overcome the thermodynamic and kinetic limitations of the ammonia synthesis reaction thus researchers have tried to overcome it for decades. At present this process represents 1% of global energy usage and 2.5% of global CO2 emissions. The proposed chemical looping ammonia synthesis approach seeks to reduce the environmental impact of this critical process and to elucidate microwave-catalytic principles.

This research aims to …


Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii Jan 2023

Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii

Graduate Theses, Dissertations, and Problem Reports

Alloy Inconel 718 is a Ni based superalloy used for high temperature applications including turbine blades, turbocharger rotors and nuclear reactors. Inconel 718 is a popular commercial atomized powder that has limitations in performance for use in additive manufacturing applications due to poor part quality and efficiency of current fabrication methods. Developing new compositions and additive manufacturing (AM) methodologies of IN718 is critical to improve the quality and the efficiency of IN718 parts manufacturing. Developing new additive manufacturing methodology that produces higher quality parts made of IN718 as compared to current methods has the potential to greatly impact industry, academia, …


Assessing A Byproduct Of The Cbd Ethanol Extraction Process For Potential As A Wood Finishing Product, Avani M. Flanagan Jan 2023

Assessing A Byproduct Of The Cbd Ethanol Extraction Process For Potential As A Wood Finishing Product, Avani M. Flanagan

Masters Theses

Developments in regulations concerning the use of CBD products as therapeutic remedies have allowed the global cannabidiol (CBD) market to take off within the past five years. Despite producers of CBD oil wanting to optimize their methods and increase product yields, several waste streams still exist. During the winterization phase of the ethanol extraction process, CBD oil is cooled and filtered so the fats, waxes, and lipids from the Cannabis sativa plant can coagulate and be removed, creating a purer oil with higher potency but contributing to the 58% (crude weight) total loss that occurs throughout the process. The removed …


Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan Jan 2023

Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan

MSU Graduate Theses

The interatomic potentials designed for binary/high entropy diborides and ultra-high temperature composites (UHTC) have been developed through the implementation of deep neural network (DNN) algorithms. These algorithms employed two different approaches and corresponding codes; 1) strictly local & invariant scalar-based descriptors as implemented in the DEEPMD code and 2) equivariant tensor-based descriptors as included in the ALLEGRO code. The samples for training and validation sets of the forces, energy, and virial data were obtained from the ab-initio molecular dynamics (AIMD) simulations and Density Functional Theory (DFT) calculations, including the simulation data from the ultra-high temperature region (> 2000K). The study …


Design And Fabrication Of A High-Performance Heat Exchanger Using An Optimized Three-Dimensional Surface Structure Through Additive Manufacturing, Seth T. Waters Jan 2023

Design And Fabrication Of A High-Performance Heat Exchanger Using An Optimized Three-Dimensional Surface Structure Through Additive Manufacturing, Seth T. Waters

Electronic Theses and Dissertations

A heat exchanger is a device used to transfer thermal energy between two intertwining fluid pathways. In this study, the design of a novel heat exchanger is proposed using functional gradient double gyroid structure. The complex internal geometries of the gyroid structure significantly increases the surface area to volume ratio, and potentially could expressively improve efficiency of the heat transfer. The proposed idea provides a new approach for the design of a high-efficiency heat exchanger. In order to fabricate the complex structured heat exchanger system additive manufacturing is adapted instead of traditionally subtractive manufacturing techniques or casting. The prototypes of …


Engineering Order-Disorder Transitions For High-Performance Thermoelectric Fe2val Heusler Alloys, Cory T. Cline Dec 2022

Engineering Order-Disorder Transitions For High-Performance Thermoelectric Fe2val Heusler Alloys, Cory T. Cline

Dartmouth College Ph.D Dissertations

Fe2VAl shows great promise as an eco-friendly and low-cost replacement to conventional low-temperature (250-500 K) thermoelectric materials. Current thermoelectric materials use toxic and expensive elements like Te and Sb, whereas Fe2VAl offers a larger power factor at a lower cost and a reduced risk of environmental pollution. The key issue with Fe2VAl is the alloy’s relatively large thermal conductivity compared to its semiconductor competitors. This thesis aims to investigate a hierarchical approach to reduce lattice thermal conductivity through a preliminary exploration of heavy element substitutions and mechanical deformation, then through probing order-disorder transitions for …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere Dec 2022

Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere

All Dissertations

Carbon fibers have the highest strength and modulus among all known fibers and are used as reinforcements in high-performance composites [1]. Carbon fibers also have a very low density relative to metals. Therefore, carbon fibers possess ultrahigh specific strength and modulus, which make them desirable for high-performance light-weight composites. A vast majority of commercial carbon fibers are produced from PAN precursors that are expensive, which limits the use of PAN-derived carbon fibers to aerospace applications (e.g., airplanes). However, for costsensitive applications, there is a need for low-cost, moderate performance carbon fibers. Lignin is a low-cost by-product of pulping and biorefining …