Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 1376

Full-Text Articles in Materials Science and Engineering

3d Printed Aircraft, Matthew Nagy, Charles D'Amico, Alexis Salgado Medina Jun 2023

3d Printed Aircraft, Matthew Nagy, Charles D'Amico, Alexis Salgado Medina

Mechanical Engineering

This project is to design, build, and test a 3D-printable aircraft. The goal is to create a final design that will be able to fly for the longest duration possible, around 20 seconds. To determine the correct preliminary design and manufacturing process for a 3D printed RC aircraft, an analysis of multiple design options and manufacturing materials was performed. This allowed for a variety of choices for aircraft type, airfoil design, structure, among other topics to be narrowed down to the most promising option. It has been found that the aircraft will follow a design similar to industry motor-gliders, with …


The Modernization Of Large Power Transformer Tanks, Babajide O. Williams Jun 2023

The Modernization Of Large Power Transformer Tanks, Babajide O. Williams

Electronic Theses and Dissertations

Due to the current demands placed on the power grid in terms of climate change, increasing urbanization, and terrorist attacks, the U.S. government in response to these demands, mandated that all the grid components be modernized in order to increase their reliability. As a critical component of the grid, Large Power Transformers (LPTs) play a key role in ensuring sustainable power generation and distribution. A literature search performed in this work and the analysis of data retrieved from the search showed that the tanks of these LPTs are critical to their durability, longevity, and reliability. Therefore, the reliability of LPTs …


Exploring The Potential Of Pavegen’S Kinetic Energy Generating Floor For Sustainable Energy Solutions: A Proposal For Cal Poly Slo, Brandon J. Cuneo Jun 2023

Exploring The Potential Of Pavegen’S Kinetic Energy Generating Floor For Sustainable Energy Solutions: A Proposal For Cal Poly Slo, Brandon J. Cuneo

Construction Management

This paper proposes the installation of Pavegen's kinetic energy generating floors at Cal Poly’s campus as a sustainable energy solution. Pavegen has developed a pioneering technology that converts footsteps into clean and renewable energy. The versatility of these floors is demonstrated through successful implementations in various settings, such as transportation hubs and public spaces, generating power from foot traffic. Collaborations with Schneider Electric, installation at Dupont Circle, and integration at Heathrow Airport showcase the potential for sustainable urban infrastructure. This paper outlines research conducted on Pavegen and similar solutions, including communication with company representatives and examining proposed installation locations at …


Effective Nanomembranes From Chitosan/Pva Blend Decorated Graphene Oxide With Gum Rosin And Silver Nanoparticles For Removal Of Heavy Metals And Microbes From Water Resources, Mohamed Morsy May 2023

Effective Nanomembranes From Chitosan/Pva Blend Decorated Graphene Oxide With Gum Rosin And Silver Nanoparticles For Removal Of Heavy Metals And Microbes From Water Resources, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Synthesis And Characterization Of Sodium Cathode Materials, He Zhou May 2023

Synthesis And Characterization Of Sodium Cathode Materials, He Zhou

McKelvey School of Engineering Theses & Dissertations

As sodium batteries hold great promise as a next-generation energy storage device to replace lithium batteries, the development of sodium battery materials has become increasingly urgent. The current study aims to investigate two potential sodium-ion battery cathode materials, Sodium Vanadium Phosphate, and Sodium Manganese Hexacyanoferrate, optimize the experimental procedures, conduct a systematic analysis of material properties and characterization, and ultimately determine the ideal synthesis conditions for these materials.

In the first part of the study, we focused on optimizing the synthesis of Sodium Vanadium Phosphate. By investigating various synthesis conditions, such as annealing temperature, pressure, ascorbic acid content, and material …


Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo May 2023

Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo

Publications and Research

The goal of the current study is to investigate cutting-edge techniques for recycling filament waste from 3D printing procedures. Appropriate waste management techniques are required to reduce this trash's harmful environmental consequences. The goal of the project is to look at new methods for recycling filament waste in order to minimize disposal and encourage reuse. To acquire data from pertinent papers and research, a thorough literature review methodology was used. The findings show that this issue may be resolved utilizing a variety of recycling techniques, including shredding, melting, and re-extrusion. The type of filament waste and the intended goal will …


Utilization Of Machine Learning To Investigate Material State, Ana B. Abadie May 2023

Utilization Of Machine Learning To Investigate Material State, Ana B. Abadie

Honors College Theses

The ability to predict material behavior that undergoes various loading conditions is critical to the development of reliable and safe components. Thermal and mechanical fatigue loading can cause significant damage to materials, leading to failure and potential safety hazards. Machine learning algorithms have emerged as a promising tool for improving accuracy and efficiency of predicting material behavior under such loading conditions. This research provides a comprehensive overview of a machine learning algorithm that is able to analyze and predict material state independently of the loading sequence. Unidirectional carbon fiber reinforced polymer (UD CFRP) composite which has undergone two different loading …


Development Of Dynamic Risk-Based Inspection Using Forward Difference Approach For Pipe Failure Due To Uniform Corrosion, Jaka Fajar Fatriansyah, Zahra Nadia Nurullia, Andreas Federico, Dedi Priadi May 2023

Development Of Dynamic Risk-Based Inspection Using Forward Difference Approach For Pipe Failure Due To Uniform Corrosion, Jaka Fajar Fatriansyah, Zahra Nadia Nurullia, Andreas Federico, Dedi Priadi

Journal of Materials Exploration and Findings

The oil and gas industry is one of the world's largest and most influential energy contributors. All aspects involved in the operation of this industry are fundamental to be reviewed and managed correctly, especially by preventing or minimizing the failures that could occur. Uniform corrosion is the most common component failure mechanism that can cause failure in the oil and gas industry. The company's actions in managing and preventing the risk of this type of failure have a major role in the sustainability of the company due to the possibility of more significant impacts if the risk cannot be handled …


Non-Collinear Magnetic Textures Studied By Neutron Scattering, Nan Tang May 2023

Non-Collinear Magnetic Textures Studied By Neutron Scattering, Nan Tang

Doctoral Dissertations

Non-collinear magnetic structures, where the magnetic moments do not align along a single axis, can lead to interesting physical phenomena and potential device applications. In this dissertation, two specific non-collinear magnetic textures are studied which includes soft/hard bilayer and skyrmions. Soft/hard magnetic bilayer thin films have been widely used in data storage technologies and permanent magnet applications. Here, we use polarized neutron reflectometry (PNR) to study magnetic configuration in soft-hard bilayer heterostructure thin films designed with different sample geometry and material properties under a range of temperatures and fields. Comparing the PNR results to the micromagnetic simulations reveals that the …


Correlating Large-Format Additive Manufacturing Processing Parameters To Fiber Length And The Mechanical Performance Of Reinforced Polymer Composites, Andrew Phillip Rhodes May 2023

Correlating Large-Format Additive Manufacturing Processing Parameters To Fiber Length And The Mechanical Performance Of Reinforced Polymer Composites, Andrew Phillip Rhodes

Masters Theses

The Big Area Additive Manufacturing (BAAM) system at Oak Ridge National Laboratory has been used to produce carbon fiber reinforced structures for several years, including vehicles, building constituents, composite tooling, etc. While the development of a large-format polymer additive manufacturing (AM) system has moved quickly, the impact of the BAAM’s extruder on the length of carbon fiber feedstock has not been systematically studied. Numerous studies in processing fiber reinforced thermoplastics in plasticizing and injection molding systems have shown that fibers are subjected to significant shear as they are processed, which can cause a drastic reduction in fiber length which negatively …


Development And Characterization Of Stable Low-Cost Salt Hydrate-Based Phase Change Materials For Thermal Energy Storage Applications, Damilola Olayinka Akamo May 2023

Development And Characterization Of Stable Low-Cost Salt Hydrate-Based Phase Change Materials For Thermal Energy Storage Applications, Damilola Olayinka Akamo

Doctoral Dissertations

Energy storage technologies are gaining attention due to rising utilization of renewable energy sources. One of the viable energy storage technologies is thermal energy storage (TES) in which system stores and releases thermal energy for various uses. Applications for TES systems include building systems, space heating and cooling, and refrigeration. Several TES systems use phase change materials (PCMs) to operate near-isothermally owing to phase change latent heat. Inorganic salt hydrate PCMs are popular because to their inexpensive cost, high energy density, and near ambient phase transition temperature. However, salt hydrate PCMs have phase separation, low thermal conductivity, and supercooling issues …


High-Pressure Slurry Ablation For Improving Separation Of Copper/Molybdenum And Flotation Of Gold Tailings, Mitchell Harvey May 2023

High-Pressure Slurry Ablation For Improving Separation Of Copper/Molybdenum And Flotation Of Gold Tailings, Mitchell Harvey

Graduate Theses & Non-Theses

Disa Technologies’ High-Pressure Slurry Ablation (HPSA) is a patented particle attrition technology for the comminution and selective liberation of minerals. Two slurry streams are pumped at high pressure through opposing nozzles and collisions between solid particles suspended in the slurry streams cause breakage of the feed material. HPSA was evaluated for improving the rougher flotation of molybdenite from Cu-Mo bulk concentrate and gold-bearing pyrite from gold tailings.

Copper/molybdenum samples were provided by Montana Resources in Butte, Montana. A two-factor factorial design of experiments was used to identify HPSA operating conditions which gave the highest increase in flotation performance. Variables were …


Optimization Of Porosity In Cold Spray Produced Copper And Zinc Coatings, Cameron Hughes May 2023

Optimization Of Porosity In Cold Spray Produced Copper And Zinc Coatings, Cameron Hughes

Graduate Theses & Non-Theses

Since its invention in 1981, the cold spray (CS) additive manufacturing (AM) process has been studied and optimized to produce well-adhered, dense material coatings. CS can operate at a wide range of temperatures if the feed material remains in a solid state. Copper and zinc were studied to characterize and understand the effects of heating element voltage, travel speed, and standoff distance on deposit porosity, grain size, microhardness, and coating thickness. Samples were sprayed on 3.2 mm x 25 mm x 150 mm 6061 aluminum substrates. Sections were taken from the middle of the samples to represent steady-state conditions. Sample …


Molecular Dynamics Simulation On Molybdenum Disulfide: Thermal-Mechanical Properties And Phase Transitions Under External Loading, Mahabubur Rahman May 2023

Molecular Dynamics Simulation On Molybdenum Disulfide: Thermal-Mechanical Properties And Phase Transitions Under External Loading, Mahabubur Rahman

All Dissertations

Due to their remarkable properties, transition metal dichalcogenides (TMDs) have received much scientific interest throughout the past decade. Two layers of chalcogen atoms (S, Se, Te) sandwich a layer of transition metal atoms (Mo, W, Ta) to form the three-atom thick unit cell in TMDs. The interaction between TMD "single layers" is mediated by neighboring chalcogen planes and bonded by Van der Waals forces. Due to this weak out-of-plane interaction, bulk samples can be thinned down to a single layer by exfoliation. Among the TMDs, Molybdenum Disulfide (MoS2) shows promise in the field of electronics, optics, and sensing …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Surface Corrosion Response Of Al Alloys A383 And Aural 2 With Ce Additions In Aqueous Nacl And Salt-Fog Environments, Michael James Thompson May 2023

Surface Corrosion Response Of Al Alloys A383 And Aural 2 With Ce Additions In Aqueous Nacl And Salt-Fog Environments, Michael James Thompson

Masters Theses

Copper is commonly used in aluminum alloys to increase its strength by solid solution and precipitation strengthening, however, the corrosion resistance is inversely related to the amount of copper in the alloy. Over 70 percent of material used to produce aluminum alloys in the US come from recycled (secondary) alloys, many of which have a copper content of more than one percent by weight. Alloys with tightly controlled tolerances, where copper is seen as an impurity, are unable to utilize many of the recycling feedstock without adding newly processed (primary) aluminum to dilute impurities to within specifications. Primary aluminum is …


Mechanical Characterization Of Additively Manufactured Alloys Compared To Their Wrought Counterparts, Laith A. Alqawasmi Apr 2023

Mechanical Characterization Of Additively Manufactured Alloys Compared To Their Wrought Counterparts, Laith A. Alqawasmi

Mechanical Engineering ETDs

Additive manufacturing is a method of manufacturing based on building parts layer by layer, allowing for more control over shape of the product, therefore reducing machining costs, reducing material waste, faster production times and the ability to build complex engineering design that other manufacturing technologies won’t be able to produce. This research is on the tensile and indentation testing (following ASME standards) of 3D printed Ti-6Al-4V and Inconel 718 built by powder-based direct energy deposition technology. Ti-6Al-4V is an attractive material for the aerospace and aviation industry, and Inconel 718, a nickel-chromium based superalloy, is an attractive material for usage …


Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani Apr 2023

Femtotesla Magnetometry And Nanoscale Imaging With Color Centers In Diamond, Yaser Silani

Optical Science and Engineering ETDs

Intriguing photophysical properties of color centers in diamond make them ideal candidates for many applications from imaging and sensing to quantum networking. In the first part of this work, we have studied the silicon vacancy (SiV) centers in diamond for nanoscale imaging applications. We showed that these centers are promising fluorophores for Stimulated Emission Depletion (STED) microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. In the second part, we built a femtotesla Radio-Frequency (RF) magnetometer based on the diamond nitrogen vacancy (NV) centers and magnetic flux concentrators. We used this sensor to remotely detect Nuclear Quadrupole Resonance …


Development Of Novel Electrodes And Electrolytes For Safer Aqueous Ammonium Ion Batteries With Enhanced Performance., Shelton Farai Kuchena Apr 2023

Development Of Novel Electrodes And Electrolytes For Safer Aqueous Ammonium Ion Batteries With Enhanced Performance., Shelton Farai Kuchena

LSU Doctoral Dissertations

The Lithium-ion battery (LIBs) system has dominated the battery market because of its superior energy and power density. Problems related to LIBs such as safety, scarcity of cobalt and lithium have led researchers to explore alternative battery systems. NH4+ ion is a nonmetal charge carrier with lower molar mass (18 mol g-1) and smaller hydrated ionic size (3.31 Å) which results in excellent electrochemical properties. Furthermore, NH4+ ion has a tetrahedral structure that has no preferred orientation as compared to spherical metal ions giving a different intercalation chemistry based on hydrogen bonding. These properties …


Impact Resistance Of Hybrid Metal-Organic Frameworks/Carbon Fibers Composites, Derek Isaac Espinosa Ramirez Apr 2023

Impact Resistance Of Hybrid Metal-Organic Frameworks/Carbon Fibers Composites, Derek Isaac Espinosa Ramirez

Doctoral Dissertations and Master's Theses

The increase in the use of carbon fiber-reinforced polymers (CFRPs) composites in the aerospace industry generated the need of improving the properties and capabilities of these composites by adding nano-reinforcements to the carbon fibers, also called hybrid fiber reinforced polymer composites. In this study, the energy absorption due to impact at low speed will be tested and simulated in four configurations of CFRPs utilizing the same [0/90]S layout throughout them.

The carbon fiber configurations used during this study are de-sized, acid-activated, metal-organic frameworks (MOF), and carbon nanotubes (CNTs). Nickel (II) Nitrate, Methylimidazole, and Methanol were used to grow the …


Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins Mar 2023

Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins

Faculty Publications

Additive manufacturing techniques enable a wide range of possibilities for novel radiation detectors spanning simple to highly complex geometries, multi-material composites, and metamaterials that are either impossible or cost prohibitive to produce using conventional methods. The present work identifies a set of promising formulations of photocurable scintillator resins capable of neutron-gamma pulse shape discrimination (PSD) to support the additive manufacturing of fast neutron detectors. The development of these resins utilizes a step-by-step, trial-and-error approach to identify different monomer and cross-linker combinations that meet the requirements for 3D printing followed by a 2-level factorial parameter study to optimize the radiation detection …


Accurate Evaluation Of The Direction-Dependent Mechanical Properties Of Ideal Single Crystals: A Comparative Ab Initio Study, Jaylan Ali Elhalawani Feb 2023

Accurate Evaluation Of The Direction-Dependent Mechanical Properties Of Ideal Single Crystals: A Comparative Ab Initio Study, Jaylan Ali Elhalawani

Theses and Dissertations

The mechanical properties of a single crystal or a grain in a polycrystalline material are highly dependent on the direction of the applied load. Key properties of interest are the Young’s modulus and the Poisson ratio in the small strain limit, and the ideal tensile strength in the large strain regime. Prior atomistic computations of these properties interchangeably used two approaches. In one approach the stress-strain response is explicitly calculated via a numerical tensile test experiment. In the second approach the second order single crystal elastic constants are computed via small deformations and then used in analytical equations to derive …


Atomistic Simulation Studies Of Thin Film Growth And Plastic Deformation In Metals And Metal/Ceramic Nanostructures, Reza Namakian Feb 2023

Atomistic Simulation Studies Of Thin Film Growth And Plastic Deformation In Metals And Metal/Ceramic Nanostructures, Reza Namakian

LSU Doctoral Dissertations

Despite the significant improvements in manufacturing and synthesis processes of metals and ceramics in the past decades, there are still areas in which the procedure is still frequently more of an art or skill rather than a science. Therefore, systematic and combined experimental and computational studies are required to facilitate the development of techniques that offer thorough understanding of the events taking place during manufacturing and synthesis processes. With regard to these issues, it is paramount to address microscale characterizations and atomic scale understanding of the events during fabrication processes. One of the focuses of this study is unraveling fundamental …


Nanoclays‑Containing Bio‑Based Packaging Materials: Properties, Applications, Safety, And Regulatory Issues, Kalpani Y. Perera, Maille Hopkins, Amit K. Jaiswal Dr, Swarna Jaiswal Feb 2023

Nanoclays‑Containing Bio‑Based Packaging Materials: Properties, Applications, Safety, And Regulatory Issues, Kalpani Y. Perera, Maille Hopkins, Amit K. Jaiswal Dr, Swarna Jaiswal

Articles

Food packaging is an important concept for consumer satisfaction and the increased shelf life of food products. The introduction of novel food packaging materials has become an emerging trend in recent years, which could be mainly due to environmental pollution caused by plastic packaging and to reduce food waste. Recently, numerous studies have been carried out on nanoclays or nanolayered silicate to be used in packaging material development as reinforcing filler composites. Different types of nanoclays have been used as food packaging materials, while montmorillonite (MMT), halloysite, bentonite (BT), Cloisite, and organically modified nanoclays have become of great interest. The …


Launching A 3d Printing Program For Students: Recommendations And Best Practices For Libraries, Wilhelmina Randtke, Lee Bareford Feb 2023

Launching A 3d Printing Program For Students: Recommendations And Best Practices For Libraries, Wilhelmina Randtke, Lee Bareford

Georgia Library Quarterly

The Georgia Southern University Libraries launched a 3D printing program for students in July 2022. Prior to launch, library employees at two of Georgia Southern University’s campuses investigated options for implementing safe, affordable, and sustainable 3D printing in existing academic libraries without retrofitting costly ventilation systems into existing facilities. This article describes the reasons why the Georgia Southern University Libraries thought that a 3D printing program could fulfill a service need for students across university colleges and departments and outlines some of the challenges, best practices, and unique innovations that the library’s employees experienced throughout the program launch process. The …


Adsorptive Properties And On-Demand Magnetic Response Of Lignin@Fe3o4 Nanoparticles At Castor Oil–Water Interfaces, Mohammad J. Hasan, Emily Westphal, Peng Chen, Abishek Saini, I-Wei Chu, Sarah J. Watzman, Esteban E. Ureña-Benavides, Erick S. Vasquez Jan 2023

Adsorptive Properties And On-Demand Magnetic Response Of Lignin@Fe3o4 Nanoparticles At Castor Oil–Water Interfaces, Mohammad J. Hasan, Emily Westphal, Peng Chen, Abishek Saini, I-Wei Chu, Sarah J. Watzman, Esteban E. Ureña-Benavides, Erick S. Vasquez

Chemical and Materials Engineering Faculty Publications

Lignin@Fe3O4 nanoparticles adsorb at oil–water interfaces, form Pickering emulsions, induce on-demand magnetic responses to break emulsions, and can sequester oil from water. Lignin@Fe3O4 nanoparticles were prepared using a pH-induced precipitation method and were fully characterized. These were used to prepare Pickering emulsions with castor oil/Sudan red G dye and water at various oil/water volume ratios and nanoparticle concentrations. The stability and demulsification of the emulsions under different magnetic fields generated with permanent magnets (0–540 mT) were investigated using microscopy images and by visual inspection over time. The results showed that the Pickering emulsions were more stable at the castor oil/water …


Source Data For Xueyan Feng, Michael S. Dimitriyev & Edwin L. Thomas, "Soft, Malleable Double Diamond Twin", Xueyan Feng, Michael S. Dimitriyev, Edwin L. Thomas Jan 2023

Source Data For Xueyan Feng, Michael S. Dimitriyev & Edwin L. Thomas, "Soft, Malleable Double Diamond Twin", Xueyan Feng, Michael S. Dimitriyev, Edwin L. Thomas

Data and Datasets

Source data and code for Xueyan Feng, Michael S. Dimitriyev & Edwin L. Thomas, "Soft, malleable double diamond twin"


Mechanical Design Of A Microwave Imaging Device For Breast Cancer Detection In Mri Scanners, Grace M. Player Jan 2023

Mechanical Design Of A Microwave Imaging Device For Breast Cancer Detection In Mri Scanners, Grace M. Player

Dartmouth College Master’s Theses

This project seeks to develop an updated version of a microwave imaging device for use in conjunction with breast MRI, improving upon existing technology and developing novel concepts for the device. It posits three primary redesign targets for updating the previous system: resizing the system height, making the device more iteration- friendly, and improving the overall manufacturability of the device by replacing custom components with commercially available alternatives. All three of these redesign targets are met in the new design, V2.0. The height is reduced by reducing antenna travel and height, embedding some components, and shortening the tank wall, resulting …


Preparation, Cure, And Characterization Of Cyanate Ester-Epoxy Blends Containing Reactive Flame Retardants, Mustafa Mukhtar, Donald A. Klosterman Jan 2023

Preparation, Cure, And Characterization Of Cyanate Ester-Epoxy Blends Containing Reactive Flame Retardants, Mustafa Mukhtar, Donald A. Klosterman

Chemical and Materials Engineering Faculty Publications

Cyanate ester resins are sometimes mixed with lower cost epoxy monomers to modify cost, toughness, and processing capabilities. Despite the high performance of these thermosetting polymers, flame retardancy remains an issue. This study examined blends of three different commercial cyanate ester monomers (LVT-100, LECy, and XU-71787.02) and diglycidyl ether of bisphenol A (DGEBA) at 50/50 wt% of each type. The blends were successfully reacted with two reactive flame retardants (FR): 9,10-dihydro-9-ox-9-phosphaphenanthrene-10-oxide (DOPO) and poly(m-phenylene methylphosphonate) (PMP) at phosphorus contents ranging from 0 to 3 wt%. The curing behavior of EP/CE blends was investigated using differential scanning calorimetry (DSC). It was …


Towards A Prototype Paleo-Detector For Supernova Neutrino And Dark Matter Detection, Emilie Marie Lavoie-Ingram Jan 2023

Towards A Prototype Paleo-Detector For Supernova Neutrino And Dark Matter Detection, Emilie Marie Lavoie-Ingram

UNF Graduate Theses and Dissertations

Using ancient minerals as paleo-detectors is a proposed experimental technique expected to transform supernova neutrino and dark matter detection. In this technique, minerals are processed and closely analyzed for nanometer scale damage track remnants from nuclear recoils caused by supernova neutrinos and possibly dark matter. These damage tracks present the opportunity to directly detect and characterize the core-collapse supernova rate of the Milky Way Galaxy as well as the presence of dark matter. Current literature presents theoretical estimates for these potential tracks, however, there is little research investigating the experimental feasibility of this technique. At the University of North Florida, …