Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 1348

Full-Text Articles in Engineering Science and Materials

Me-Em Enewsbrief, June 2024, Department Of Mechanical Engineering- Engineering Mechanics, Michigan Technological University Jul 2024

Me-Em Enewsbrief, June 2024, Department Of Mechanical Engineering- Engineering Mechanics, Michigan Technological University

Department of Mechanical and Aerospace Engineering eNewsBrief

No abstract provided.


Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


A Computational Investigation Of Wood Selection For Acoustic Guitar, Jonah Osterhus May 2024

A Computational Investigation Of Wood Selection For Acoustic Guitar, Jonah Osterhus

Senior Honors Theses

The acoustic guitar is a stringed instrument, often made of wood, that transduces vibrational energy of steel strings into coupled vibrations of the wood and acoustic pressure waves in the air. Variations in wood selection and instrument geometry have been shown to affect the timbre of the acoustic guitar. Computational methods were utilized to investigate the impact of material properties on acoustic performance. Sitka spruce was deemed the most suitable wood for guitar soundboards due to its acoustic characteristics, strength, and uniform aesthetic. Mahogany was deemed to be the best wood for the back and sides of the guitar body …


Me-Em Enewsbrief, Mar 2024, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University May 2024

Me-Em Enewsbrief, Mar 2024, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical and Aerospace Engineering eNewsBrief

No abstract provided.


A Multi-Material Platform For Imaging Of Single Cell-Cell Junctions Under Tensile Load Fabricated With Two-Photon Polymerization, Jordan Rosenbohm, Grayson Minnick, Bahareh Tajvidi Safa, Amir M. Esfahani, Xiaowei Jin, Haiwei Zhai, Nickolay V. Lavrik, Ruiguo Yang May 2024

A Multi-Material Platform For Imaging Of Single Cell-Cell Junctions Under Tensile Load Fabricated With Two-Photon Polymerization, Jordan Rosenbohm, Grayson Minnick, Bahareh Tajvidi Safa, Amir M. Esfahani, Xiaowei Jin, Haiwei Zhai, Nickolay V. Lavrik, Ruiguo Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We previously reported a single-cell adhesion micro tensile tester (SCAμTT) fabricated from IP-S photoresin with two-photon polymerization (TPP) for investigating the mechanics of a single cell-cell junction under defined tensile loading. A major limitation of the platform is the autofluorescence of IP-S, the photoresin for TPP fabrication, which significantly increases background signal and makes fluorescent imaging of stretched cells difficult. In this study, we report the design and fabrication of a new SCAμTT platform that mitigates autofluorescence and demonstrate its capability in imaging a single cell pair as its mutual junction is stretched. By employing a two-material design using IP-S …


The Effects Of Uv Degradation On Polycarbonate Plastics Under Dynamic Compressive Loading, Hannah Bradford May 2024

The Effects Of Uv Degradation On Polycarbonate Plastics Under Dynamic Compressive Loading, Hannah Bradford

Honors Theses

The objective of this experiment was to analyze the dynamic properties of polycarbonate plastics subjected to accelerated ultraviolet (UV) exposure. This was done by subjecting rods of polycarbonate plastic to UV degradation in a QUV accelerated weathering machine for 375, 750, and 1500-hours. These rods were then tested under dynamic compression using a Split-Hopkinson Pressure Bar at an average strain rate of 1600/s. The Split-Hopkinson pressure bar works by rapidly compressing a sample between 3 axial rods sending an elastic wave through the sample. The strain gauges on the incident rod and the transmission rod transformed the elastic wave deformation …


Blade Design And Validation Of Hydrokinetic Turbine To Harvest Water Current Energy, Setare Sadeqi May 2024

Blade Design And Validation Of Hydrokinetic Turbine To Harvest Water Current Energy, Setare Sadeqi

University of New Orleans Theses and Dissertations

The innovative aspect of this research lies in the careful integration of cutting-edge technologies throughout the entire process of designing, fabricating, and testing the carbon fiber propeller for the 3-bladed horizontal axis ocean current turbine (OCT). SolidWorks software played a pivotal role in the initial design phase, enabling a meticulous and precise modeling of the propeller's geometry. The utilization of SolidWorks allowed for a detailed exploration of various design parameters, ensuring that the propeller's structure and form were optimized for performance in ocean current conditions. Moving beyond the realm of virtual design, the choice of carbon fiber as the fabrication …


Towing Tank Trials Of Hydrokinetic Turbine Scale Model To Support Marine Energy System Verification, Shahab Rouhi May 2024

Towing Tank Trials Of Hydrokinetic Turbine Scale Model To Support Marine Energy System Verification, Shahab Rouhi

University of New Orleans Theses and Dissertations

In response to the escalating demand for sustainable energy solutions and the critical reevaluation of conventional fossil fuels due to environmental concerns, this dissertation embarks on a comprehensive exploration of hydrokinetic energy as a promising alternative. The study delves into the underexplored domain of hydrokinetic energy, leveraging innovative methodologies for effective utilization and harnessing, particularly through the development and investigation of hydrokinetic turbines.

In the realm of hydrokinetic energy conversion, our research has exclusively concentrated on horizontal-axis turbines, distinct from other turbine configurations. Noteworthy is the adaptation of a conventional horizontal-axis wind turbine for water currents, revealing enhanced performance through …


Investigation On The Effects Of Biofouling On The Boundary Layer, Adam N. Bacon May 2024

Investigation On The Effects Of Biofouling On The Boundary Layer, Adam N. Bacon

University of New Orleans Theses and Dissertations

This study is an investigation of the effect of biofouling on the boundary layer of a flat plate and a NACA 4-digit series foil. Three identical hydrofoils made of resin were placed in the Gulf of Mexico at Grand Isle, Louisiana, and observed and analyzed by marine biologists at the University of New Orleans for their species composition. The resulting biofouling that grew was primarily made up of barnacles and bryozoans. The foils were submerged in an open channel flume at zero incidence and subjected to a series of experiments whose arc-length Reynolds numbers ranged from approximately 13000 to 32000. …


Improved Ballistic Impact Resistance Of Nanofibrillar Cellulose Films With Discontinuous Fibrous Bouligand Architecture, Colby Caviness May 2024

Improved Ballistic Impact Resistance Of Nanofibrillar Cellulose Films With Discontinuous Fibrous Bouligand Architecture, Colby Caviness

All Theses

Natural protective materials offer unparalleled solutions for impact-resistant material designs that are simultaneously lightweight, strong, and tough. Particularly, the dactyl club of mantis shrimp features chitin nanofibrils organized in a Bouligand structure, which has been shown to effectively dissipate high-impact energy during powerful strikes. The mollusk shells also achieve excellent mechanical strength, toughness, and impact resistance with a staggered, layer-by-layer structure. Previous studies have shown that hybrid designs, by combining different bioinspired microstructures, can lead to enhanced mechanical strength and energy dissipation capabilities. Nevertheless, it remains unknown whether combining Bouligand and staggered structures in nanofibrillar cellulose (NFC) films, forming a …


Cal Poly Fluid Power Vehicle Challenge 2024, J. Mason Gray, Ryan D'Amour, Alberto Acho Lopez, Christian Ferrandino, Johnathan Dietz May 2024

Cal Poly Fluid Power Vehicle Challenge 2024, J. Mason Gray, Ryan D'Amour, Alberto Acho Lopez, Christian Ferrandino, Johnathan Dietz

Mechanical Engineering

In this Final Design Review, the Cal Poly Fluid Power Vehicle Team competed in Norgren’s 2024 Fluid Power Vehicle Challenge. The design need of the competition was for college teams to compete with human-powered, hydraulic-driven vehicles in an endurance race, a sprint race, an efficiency race, and a regenerative power race. The competition need was to design a vehicle to win in as many races as possible, achieving the highest overall score and winning the competition. With a design emphasis on the endurance and sprint race, the Cal Poly team designed a fluid power system that fastened to a purchased …


Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei May 2024

Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei

All Dissertations

In an era of intensified market competition, the demand for cost-effective, high-quality, high-performance, and reliable products continues to rise. Meeting this demand necessitates the mass production of premium products through the integration of cutting-edge technologies and advanced materials while ensuring their integrity and safety. In this context, Nondestructive Testing (NDT) techniques emerge as indispensable tools for guaranteeing the integrity, reliability, and safety of products across diverse industries.

Various NDT techniques, including ultrasonic testing, computed tomography, thermography, and acoustic emissions, have long served as cornerstones for inspecting materials and structures. Among these, ultrasonic testing stands out as the most prevalent method, …


Thermal Performance Investigation Of Thermoelectric Cooling System With Various Hot-Side Cooling Methods, Bowo Y. Prasetyo, Parisya P. Rosulindo, Fujen Wang Apr 2024

Thermal Performance Investigation Of Thermoelectric Cooling System With Various Hot-Side Cooling Methods, Bowo Y. Prasetyo, Parisya P. Rosulindo, Fujen Wang

Makara Journal of Technology

Thermoelectric devices have been widely used in various applications, including cooling and power generation. The potential application of thermoelectric cooling systems has been studied. However, these systems still face challenges in achieving optimal performance compared with other cooling systems. Several factors, including the hot-side cooling method, influence the performance of thermoelectric systems. This study aimed to investigate the effects of different hot-side cooling methods on the thermoelectric performance and thermal behavior of thermoelectric cooling systems. The testing methods involved the combination of the thermoelectric module with five hot-side heat exchangers, including a square heatsink, a round heatsink, a two-pipe heat …


Injectable And Rapidly Expandable Thrombin-Decorated Cryogels Achieve Rapid Hemostasis And High Survival Rates In A Swine Model Of Lethal Junctional Hemorrhage, Syed Muntazir Andrabi, S.M. Shatil Shahriar, Al-Murtadha Al-Gahmi, Benjamin L. Wilczewski, Mark A. Carlson, Jingwei Xie Apr 2024

Injectable And Rapidly Expandable Thrombin-Decorated Cryogels Achieve Rapid Hemostasis And High Survival Rates In A Swine Model Of Lethal Junctional Hemorrhage, Syed Muntazir Andrabi, S.M. Shatil Shahriar, Al-Murtadha Al-Gahmi, Benjamin L. Wilczewski, Mark A. Carlson, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Effective therapies are urgently needed to stabilize patients with marginally compressible junctional hemorrhage long enough to get them to the hospital alive. Herein, we report injectable and rapidly expandable cryogels consisting of polyacrylamide and thrombin (AT cryogels) created by cryo-polymerization for the efficient management of lethal junctional hemorrhage in swine. The produced cryogels have small pore sizes and highly interconnected porous architecture with robust mechanical strength. The cryogels exhibit rapid shape memory properties and prove to be resilient against fatigue. These cryogels also show high water/blood absorption capacity, fast blood clotting effect, and enhanced adhesion of red blood cells and …


Numerical Analysis Of Flow Fields For The Different Models Of The Shrouded Savonius Rotor, Alsaied Khalil Mahmoud, Mohamed Mahgoub Bassuoni, Mohamed Fawzy Obiaa, Ahmed Mostafa Khaira Mar 2024

Numerical Analysis Of Flow Fields For The Different Models Of The Shrouded Savonius Rotor, Alsaied Khalil Mahmoud, Mohamed Mahgoub Bassuoni, Mohamed Fawzy Obiaa, Ahmed Mostafa Khaira

Journal of Engineering Research

In this study, the effect of three different lengths (short, medium, and long) of flanged shrouded Savonius wind turbines is investigated three-dimensional (3-D) numerically by ANSYS-FLUENT. The 3-D numerical model of a simple rotor is validated by comparing the results with previous published experimental ones at the same operating conditions and geometry. The numerical and experimental results indicate a good agreement with each other when using the SST K-ω model with a time step size of 0.0025 s.The analysis of the numerical results of the three flanged shrouded models shows an enhancement of the torque coefficient at tip speed ratio …


A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi Feb 2024

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto Feb 2024

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto

Faculty Publications

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a nonlinear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Copper−Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial And Angiogenic Properties, Anik Karan, Navatha S. Polavaram, Margarita Darder, Yajuan Su, Syed Muntazir Andrabi, S M Shatil Shahriar, Johnson V. John, Zeyu Luo, Mark A. Decoster, Yu Shrike Zhang, Jingwei Xie Feb 2024

Copper−Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial And Angiogenic Properties, Anik Karan, Navatha S. Polavaram, Margarita Darder, Yajuan Su, Syed Muntazir Andrabi, S M Shatil Shahriar, Johnson V. John, Zeyu Luo, Mark A. Decoster, Yu Shrike Zhang, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Copper−cystine-based high aspect ratio structures (CuHARS) possess exceptional physical and chemical properties and exhibit remarkable biodegradability in human physiological conditions. Extensive testing has confirmed the biocompatibility and biodegradability of CuHARS under diverse biological conditions, making them a viable source of essential Cu2+. These ions are vital for catalyzing the production of nitric oxide (NO) from the decomposition of Snitrosothiols (RSNOs) found in human blood. The ability of CuHARS to act as a Cu2+ donor under specific concentrations has been demonstrated in this study, resulting in the generation of elevated levels of NO. Consequently, this dual function makes …


Implantation Of A Capsular Tension Ring During Cataract Surgery Attenuates Predicted Remodeling Of The Post-Surgical Lens Capsule Along The Visual Axis, Kurt A. Ameku, Caleb C. Berggren, Ryan M. Pedrigi Jan 2024

Implantation Of A Capsular Tension Ring During Cataract Surgery Attenuates Predicted Remodeling Of The Post-Surgical Lens Capsule Along The Visual Axis, Kurt A. Ameku, Caleb C. Berggren, Ryan M. Pedrigi

Department of Mechanical and Materials Engineering: Faculty Publications

Introduction: Cataract surgery permanently alters the mechanical environment of the lens capsule by placing a hole in the anterior portion and implanting an intraocular lens (IOL) that has a very different geometry from the native lens. We hypothesized that implant configuration and mechanical interactions with the post-surgical lens capsule play a key role in determining long-term fibrotic remodeling.

Methods: We developed the first finite element-growth and remodeling (FE-G&R) model of the post-surgical lens capsule to evaluate how implantation of an IOL with and without a capsular tension ring (CTR) impacted evolving lens capsule mechanics and associated fibrosis over …


Engineering Neurotoxin-Functionalized Exosomes For Targeted Delivery To The Peripheral Nervous System, Mena Asha Krishnan, Olawale A. Alimi, Tianshu Pan, Mitchell Kuss, Zeljka Korade, Guoku Hu, Bo Liu, Bin Duan Jan 2024

Engineering Neurotoxin-Functionalized Exosomes For Targeted Delivery To The Peripheral Nervous System, Mena Asha Krishnan, Olawale A. Alimi, Tianshu Pan, Mitchell Kuss, Zeljka Korade, Guoku Hu, Bo Liu, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood–nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived exosomes (Exos) have gained widespread attention as biocompatible vehicles for therapeutics in clinical applications. However, engineering targeted Exos for the peripheral nervous system (PNS) is still challenging. This study aims to develop a targeted Exo delivery system specifically designed for presynaptic terminals of peripheral nerve tissue. The clostridium neurotoxin, tetanus toxin-C fragment (TTC), was tethered to the …


Yap Mechanotransduction Under Cyclic Mechanical Stretch Loading For Mesenchymal Stem Cell Osteogenesis Is Regulated By Rock, Eunju Kim, Brandon D. Riehl, Tasneem Bouzid, Ruiguo Yang, Bin Duan, Henry J. Donahue, Jung Yul Lim Jan 2024

Yap Mechanotransduction Under Cyclic Mechanical Stretch Loading For Mesenchymal Stem Cell Osteogenesis Is Regulated By Rock, Eunju Kim, Brandon D. Riehl, Tasneem Bouzid, Ruiguo Yang, Bin Duan, Henry J. Donahue, Jung Yul Lim

Department of Mechanical and Materials Engineering: Faculty Publications

While yes-associated protein (YAP) is now recognized as a potent mechanosensitive transcriptional regulator to affect cell growth and differentiation including the osteogenic transcription of mesenchymal stem cells (MSCs), most studies have reported the YAP mechanosensing of static mechanophysical cues such as substrate stiffness. We tested MSC response to dynamic loading, i.e., cyclic mechanical stretching, and assessed YAP mechanosensing and resultant MSC osteogenesis. We showed that cyclic stretching at 10% strain and 1 Hz frequency triggered YAP nuclear import in MSCs. YAP phosphorylation at S127 and S397, which is required for YAP cytoplasmic retention, was suppressed by cyclic stretch. We also …


Insights Into The Characterization And Degradation Of Electrospun Polycaprolactone Scaffolds For Tissue Engineering Applications, Caleb B. Wells Jan 2024

Insights Into The Characterization And Degradation Of Electrospun Polycaprolactone Scaffolds For Tissue Engineering Applications, Caleb B. Wells

Theses and Dissertations

Electrospun polymeric biodegradable scaffolds are essential in tissue engineering, particularly for Engineered Tissue Vascular Grafts (ETVGs), which promise advancements in treating coronary artery disease, peripheral arterial disease, congenital cardiovascular defects, and renal disease. These scaffolds present a solution to issues with autologous graft availability and durability. While large-diameter grafts in low-pressure environments have seen success, small-diameter grafts in high-flow scenarios remain challenging. Understanding polymeric scaffold degradation and behavior during incubation, especially under dynamic mechanical loading, is vital for clinical translation of small-caliber ETVGs.

This research focuses on characterizing the mechanical and microstructural properties of electrospun polycaprolactone (PCL) scaffolds and their …


Me-Em 2022-23 Annual Report, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Jan 2024

Me-Em 2022-23 Annual Report, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical and Aerospace Engineering Annual Reports

Table of Contents

  • Research Updates
  • Curriculum and Instruction
  • Facilities
  • New Faculty
  • Research, Machine Learning
  • Research, Ana Dyreson
  • In Memoriam
  • Student Success
  • Alumni Profile and Activity
  • Graduates
  • Faculty Awards and Honors
  • Patents and Publications
  • Donors
  • Grants and Contracts


Short Strand Carbon Fiber Reinforced Polylactic Acid Filament For Additive Manufacturing, Dale Chenoweth, Lukas Seggi, Luke Phillips Jan 2024

Short Strand Carbon Fiber Reinforced Polylactic Acid Filament For Additive Manufacturing, Dale Chenoweth, Lukas Seggi, Luke Phillips

Williams Honors College, Honors Research Projects

In this design project, the additive manufacturing filament of short strand carbon fiber (SSCF) reinforced polylactic acid (PLA) composite was developed. The micro-size, precision cut SSCFs were mixed with the PLA pellets through a melting homogenization process. Through this process the composite material block is cut and divided into pieces for ease of pelletizing. The material block pieces are then pelletized to be fed through the single screw extruder to develop the SSCF-PLA composite filament. The SSCF-PLA filaments were manufactured with a varying amount of SSCF ranging from 0.5% to 10% of the material block's weight. Development of a 1% …


External Direct Sum Invariant Subspace And Decomposition Of Coupled Differential-Difference Equations, Keqin Gu, Huan Phan-Van Jan 2024

External Direct Sum Invariant Subspace And Decomposition Of Coupled Differential-Difference Equations, Keqin Gu, Huan Phan-Van

SIUE Faculty Research, Scholarship, and Creative Activity

This article discusses the invariant subspaces that are restricted to be external direct sums. Some existence conditions are presented that facilitate finding such invariant subspaces. This problem is related to the decomposition of coupled differential-difference equations, leading to the possibility of lowering the dimensions of coupled differential-difference equations. As has been well documented, lowering the dimension of coupled differential-difference equations can drastically reduce the computational time needed in stability analysis when a complete quadratic Lyapunov-Krasovskii functional is used. Most known ad hoc methods of reducing the order are special cases of this formulation.


Structured Invariant Subspace And Decomposition Of Systems With Time Delays And Uncertainties, Huan Phan-Van, Keqin Gu Jan 2024

Structured Invariant Subspace And Decomposition Of Systems With Time Delays And Uncertainties, Huan Phan-Van, Keqin Gu

SIUE Faculty Research, Scholarship, and Creative Activity

This article discusses invariant subspaces of a matrix with a given partition structure. The existence of a nontrivial structured invariant subspace is equivalent to the possibility of decomposing the associated system with multiple feedback blocks such that the feedback operators are subject to a given constraint. The formulation is especially useful in the stability analysis of time-delay systems using the Lyapunov-Krasovskii functional approach where computational efficiency is essential in order to achieve accuracy for large scale systems. The set of all structured invariant subspaces are obtained (thus all possible decompositions are obtained as a result) for the coupled differential-difference equations …


Schaeffler E-Axle Value Engineering, Andrew Powers Jan 2024

Schaeffler E-Axle Value Engineering, Andrew Powers

Williams Honors College, Honors Research Projects

This project aims to design a manufacturable E-Axle end housing that improves system performance while reducing cost. The project is focused on utilizing Schaeffler's manufacturing competencies to achieve a simple assembly with a significant reduction in cost per part, while using existing machines or processes within the company. The design development process will follow the conceptual design stage through Finite Element Analysis and classical engineering calculations. Cross-functional design reviews will be conducted to ensure that agreement can be reached on the manufacturing feasibility of the design. Concepts will be entered in a decision analysis sheet to identify the best one …


Extrusion-Based Additive Manufacturing Of Magnetic Heat Exchange Structures For Caloric Applications, Vaibhav Sharma Jan 2024

Extrusion-Based Additive Manufacturing Of Magnetic Heat Exchange Structures For Caloric Applications, Vaibhav Sharma

Theses and Dissertations

Currently, the commercial building sector accounts for 18% of total U.S. end-use energy consumption, of which almost a third was from on-site combustion of fossil fuels for space and water heating. Magnetic heat pumping (MHP) technology is an energy-efficient, sustainable, environmentally-friendly alternative to conventional vapor-compression cooling technology. Several MHP designs today are predicted to be highly energy efficient, on condition that suitable working materials can be developed. This materials challenge has proven to be daunting due to issues associated with intricate synthesis/post-processing protocols and complications related to shaping the mostly brittle magnetocaloric alloys into thin-walled channeled regenerator structures to facilitate …


Simulation Of Wave Propagation In Granular Particles Using A Discrete Element Model, Syed Tahmid Hussan Jan 2024

Simulation Of Wave Propagation In Granular Particles Using A Discrete Element Model, Syed Tahmid Hussan

Electronic Theses and Dissertations

The understanding of Bender Element mechanism and utilization of Particle Flow Code (PFC) to simulate the seismic wave behavior is important to test the dynamic behavior of soil particles. Both discrete and finite element methods can be used to simulate wave behavior. However, Discrete Element Method (DEM) is mostly suitable, as the micro scaled soil particle cannot be fully considered as continuous specimen like a piece of rod or aluminum. Recently DEM has been widely used to study mechanical properties of soils at particle level considering the particles as balls. This study represents a comparative analysis of Voigt and Best …


Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi Jan 2024

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This paper presents fabrication, experimental testing, and progressive failure modeling to study the deformation of an ultra-thin composite beam. The research study examines the deformation modes of a post-deployed boom under repetitive pure bending loads using a four-point bending setup and …