Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering Science and Materials

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi Jan 2024

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This paper presents fabrication, experimental testing, and progressive failure modeling to study the deformation of an ultra-thin composite beam. The research study examines the deformation modes of a post-deployed boom under repetitive pure bending loads using a four-point bending setup and …


A Hyperelastic Porous Media Framework For Ionic Polymer-Metal Composites And Characterization Of Transduction Phenomena Via Dimensional Analysis And Nonlinear Regression, Zakai J. Olsen May 2021

A Hyperelastic Porous Media Framework For Ionic Polymer-Metal Composites And Characterization Of Transduction Phenomena Via Dimensional Analysis And Nonlinear Regression, Zakai J. Olsen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Ionic polymer-metal composites (IPMC) are smart materials that exhibit large deformation in response to small applied voltages, and conversely generate detectable electrical signals in response to mechanical deformations. The study of IPMC materials is a rich field of research, and an interesting intersection of material science, electrochemistry, continuum mechanics, and thermodynamics. Due to their electromechanical and mechanoelectrical transduction capabilities, IPMCs find many applications in robotics, soft robotics, artificial muscles, and biomimetics. This study aims to investigate the dominating physical phenomena that underly the actuation and sensing behavior of IPMC materials. This analysis is made possible by developing a new, hyperelastic …


Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu Jan 2019

Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this study is to characterize the micromechanical properties of poly-L-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 μm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus of …


Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu Jun 2018

Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Objective: Stenting is one of the major treatments for malignant esophageal cancer. However, stent migration compromises clinical outcomes. A flared end design of the stent diminishes its migration. The goal of this work is to quantitatively characterize stent migration to develop new strategies for better clinical outcomes.

Methods: An esophageal stent with flared ends and a straight counterpart were virtually deployed in an esophagus with asymmetric stricture using the finite element method. The resulted esophagus shape, wall stress, and migration resistance force of the stent were quantified and compared.

Results: The lumen gain for both the flared stent and the …


The Effect Of Number Of Corrugation On Crashworthiness Of Aluminum Corrugated Tube Under Lateral Loading, Hozhabr Mozafari, Arameh Eyvazian, Abdel Magid Hamouda Jan 2017

The Effect Of Number Of Corrugation On Crashworthiness Of Aluminum Corrugated Tube Under Lateral Loading, Hozhabr Mozafari, Arameh Eyvazian, Abdel Magid Hamouda

Department of Mechanical and Materials Engineering: Faculty Publications

Thin-walled tubes have been developed and are growing in use as new energy absorber structures. The objective of this study is to investigate the energy absorption and crushing characteristics of corrugated tubes with different number of corrugation in a specific length exposed to lateral loading. At the first step, experimental tests were carried out on a corrugated tube with three con'ugations (two inner and one outer) and a tube without corrugation. After that, a finite element model was developed by means of ABAQUS software in order to study the effect of corrugation number on crushing properties of thin-walled tubes. The …


Accommodation Of The Human Lens Capsule Using A Finite Element Model Based On Nonlinear Regionally Anisotropic Biomembranes, G. David, Ryan M. Pedrigi, J. D. Humphrey Jan 2017

Accommodation Of The Human Lens Capsule Using A Finite Element Model Based On Nonlinear Regionally Anisotropic Biomembranes, G. David, Ryan M. Pedrigi, J. D. Humphrey

Department of Mechanical and Materials Engineering: Faculty Publications

Accommodation of the eyes, the mechanism that allows humans to focus their vision on near objects, naturally diminishes with age via presbyopia. People who have undergone cataract surgery, using current surgical methods and artificial lens implants, are also left without the ability to accommodate. The process of accommodation is generally well known; however the specific mechanical details have not been adequately explained due to difficulties and consequences of performing in vivo studies. Most studies have modeled the mechanics of accommodation under assumptions of a linearly elastic, isotropic, homogenous lens and lens capsule. Recent experimental and numerical studies showed that the …


Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din Nov 2016

Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Piezoelectricity has proved effective in capturing changes in structures caused by various damage mechanisms. In one approach, piezoelectric wafer active sensors (PWAS) are mounted on the surface of the host structure and utilized as both actuators and sensors to interrogate the structure and monitor its health. This is achieved by subjecting the PWAS to a transient electric pulse and reading the resulting voltage. Changes in the stiffness of the substrate due to structural damage affect the response of the PWAS, which could be correlated to integrity of the structure. Applying this technique to fibrous composite laminates encounters particular challenges due …


Matrix Structural Analysis, 2nd Edition, William Mcguire, Richard H. Gallagher, Ronald D. Ziemian Jan 2000

Matrix Structural Analysis, 2nd Edition, William Mcguire, Richard H. Gallagher, Ronald D. Ziemian

Faculty Books

The aims of the first edition of Matrix Structural Analysis were to place proper emphasis on the methods of matrix structural analysis used in practice and to lay the groundwork for more advanced subject matter. This extensively revised Second Edition accounts for changes in practice that have taken place in the intervening twenty years. It incorporates advances in the science and art of analysis that are suitable for application now, and will be of increasing importance in the years ahead. It is written to meet the needs of both the present and the coming generation of structural engineers.

KEY FEATURES …


Development Of Vibration And Sensitivity Analysis Capability Using The Theory Of Structural Variations, Ting-Yu Rong Jul 1994

Development Of Vibration And Sensitivity Analysis Capability Using The Theory Of Structural Variations, Ting-Yu Rong

Mechanical & Aerospace Engineering Theses & Dissertations

In the author's previous work entitled "General Theorems of Topological Variations of Elastic Structures and the Method of Topological Variation," 1985, some interesting properties of skeletal structures have been discovered. These properties have been described as five theorems and synthesized as a theory, called the theory of structural variations (TSV). Based upon this theory, an innovative analysis tool, called the structural variation method (SVM), has been derived for static analysis of skeletal structures (one-dimensional finite element systems).

The objective of this dissertation research is to extend TSV and SVM from one-dimensional finite element systems to multi-dimensional ones and from statics …