Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 52

Full-Text Articles in Membrane Science

Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson May 2023

Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson

Chemical Engineering Undergraduate Honors Theses

Society relies on plastic products, whether they are single use or durable. A downside of plastic is that the most common type is a product of oil and oil is not only a limited resource but also a climate-damaging resource. Polylactic acid (PLA) is a bio-based, biodegradable plastic. However, the process of converting biomass to polylactic acid polymer has the largest environmental impact of the PLA production process, so alternative methods of conversion are needed (Moretti et al., 2021). The polylactic acid polymer can be made with lactic acid, which can be converted from glucose.


Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh Apr 2023

Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh

Doctoral Dissertations

Amphiphilic block copolymers have gained a broad research interest attributed to their self-assembly properties over a range of pH, temperature, and ionic strength. Polyzwitterions have attracted special attention due to their hydrophilicity, charge sensitivity and coulombic attraction of the opposite charges over a range of environments making them a popular material of study in the field of stimuli responsive systems, for example in self-healing hydrogels, and water transport membranes. Combining the stimuli responsiveness and higher hydrophilicity of zwitterionic polymers with self-assembly behavior of amphiphilic block copolymers created an interest to study the effect of composition and identity of the zwitterionic …


Beeswax Wraps As An Alternative To Single-Use Plastics, Sarah Skiver Jan 2023

Beeswax Wraps As An Alternative To Single-Use Plastics, Sarah Skiver

Williams Honors College, Honors Research Projects

The project goal was to compare the food storage efficacy of sustainable beeswax wraps verses the single-use plastic methods of resealable plastic sandwich bags and plastic cling wrap. The goal was also to test the reusability of the beeswax wraps, as it is a key advantage of beeswax wraps that is advertised. The project purpose was to explore sustainable and eco-friendly alternatives to single use plastics, which are harmful to the environment in both their production and their disposal. Food spoilage was compared in beeswax wrap, plastic sandwich bags, and plastic cling wrap, and spoilage was also observed in a …


Fabrication Of Thin-Film Composite, Reverse-Osmosis Membranes With Polyethylenimine Modifications For Enhancing Membrane Fouling Resistance, Stephanie N. Hamilton Nov 2022

Fabrication Of Thin-Film Composite, Reverse-Osmosis Membranes With Polyethylenimine Modifications For Enhancing Membrane Fouling Resistance, Stephanie N. Hamilton

Master's Theses

Increasing water reuse opportunities for communities has become increasingly important as access to clean water is becoming more scarce. Reverse Osmosis (RO) is an advanced treatment technology used in water recycling wastewater for potable reuse applications. RO is a promising technology; however, the membranes have limitations including their high energy demand and their susceptibility to membrane fouling. The main objective of this study was to develop a reproducible method for the fabrication of RO membranes with enhanced flux and reduced susceptibility to fouling. Literature contains numerous publications on fabrication of thin film composite (TFC) RO membranes with high performance. However, …


Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster May 2022

Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster

All Dissertations

The development of rapid screening tools for special nuclear materials remains a crucial focus for nonproliferation efforts. Traditional approaches for the analysis of trace-level Pu isotopes in water requires tedious and time-consuming sample preparation steps that do not lend well to expeditious screening. Therefore, a novel analytical method that combines both Pu concentration and source preparation into a single detection system would make for an invaluable tool for nuclear security applications. Extractive membranes absorbers can help to fulfill this role as they are capable of concentrating Pu to detectable limits while subsequently serving as alpha spectrometry sample sources. In Chapter …


Isolation And Production Of Tandem Collagen Binding Domain From Clostridial Collagenase Colg And Developments In C1q Reagent Production For Future Molecule Characterization Work, Stephanie Beitle May 2022

Isolation And Production Of Tandem Collagen Binding Domain From Clostridial Collagenase Colg And Developments In C1q Reagent Production For Future Molecule Characterization Work, Stephanie Beitle

Chemical Engineering Undergraduate Honors Theses

This thesis covers a two part project: the production methods to create a double collagen binding domain molecule with a growth factor for wound healing applications and the development of a new in-house production method for isolating C1q from bovine blood. The wound healing molecule was created using transformation, sonication, and purification before being tested via electrophoresis SDS page and Western blots to confirm the molecule’s presence. The C1q in-house production method utilizes an ultrafiltration flow cell rather than dialysis at a critical point in the process, allowing for researchers to not only be able to use a single small …


Synthesis And Phase Transition Characterization Of Liquid Crystal Membranes With Slit-Like Pores, Isaac Hopwood May 2022

Synthesis And Phase Transition Characterization Of Liquid Crystal Membranes With Slit-Like Pores, Isaac Hopwood

Chemical Engineering Undergraduate Honors Theses

Membranes with slit-like pores have been of interest for some time due to their ability to reject smaller particles than traditional cylindrical-pored membranes at the same fluid flux. However, using liquid crystals as a template for this sort of membrane has not been thoroughly investigated. In this study, the liquid crystal mixture of RM257 (2-Methyl-1,4-phenylene bis(4-(3-(acryloyloxy)propoxy)benzoate)) and 5CB (4-Cyano-4'-pentylbiphenyl) for the purpose of manufacturing membranes with slit-like pores, the phase transition behavior of this LC mixture at various mole fractions of RM257, and the impact of mole fraction of RM257 in the liquid crystal (LC) mixture and membrane manufacturing conditions …


Reactive Thin Film Polymers And Thin Film Composite Membranes For The Rapid Screening Of Uranium Isotopes, Abenazer W. Darge May 2022

Reactive Thin Film Polymers And Thin Film Composite Membranes For The Rapid Screening Of Uranium Isotopes, Abenazer W. Darge

All Dissertations

Traditional radiochemistry approaches for the detection of trace-level alpha-emitting radioisotopes in water require lengthy offsite sample preparations and do not lend themselves to rapid quantification. Therefore, a novel platform is needed that combines onsite purification, concentration, and isotopic screening with a fieldable detection system. My dissertation research objective was to develop novel reactive thin polymer films and thin film composite membranes for the selective separation of uranium from environmental water followed by direct isotopic analysis by alpha spectroscopy. Chapter 1 reviews progress made on uranium separation from aqueous matrices and discusses methods used for the determination of isotopic composition.

Chapter …


Tuning Electrochemical Interactions And Polymer Electrolyte Interfaces For Enhanced Organic Acid Separations Using Electrodeionization, Matthew Leo Jordan Mar 2022

Tuning Electrochemical Interactions And Polymer Electrolyte Interfaces For Enhanced Organic Acid Separations Using Electrodeionization, Matthew Leo Jordan

LSU Doctoral Dissertations

Chemical separations are critical processes for chemical and industrial plants to purify and isolate products however current separation technologies, such as distillation, rely on energy intensive processes. Electrochemical separation processes, such as electrodialysis and electrodeionization, are an energy efficient alternative that are emerging as an alternative for thermal-based separations. Organic acids are weakly ionizable species and susceptible for purification from process streams using electrochemical processes. Recently the fermentation route has garnered greater attention as a means for producing value-added chemicals, such as organic acids, from a renewable feedstock and aiding the circular economy. Some of the challenges electrodialysis faces for …


Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman Jan 2022

Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman

Graduate Theses, Dissertations, and Problem Reports

The specificity and efficiency with which enzymes catalyze selective chemical reactions far exceeds the performance of traditional heterogeneous catalysts that are predominant in industrial applications such as conversion of commodity chemicals to value-added products, fuel cells, and petroleum refinement. Moreover, biocatalysts exhibit exceptionally high product turnover at ambient conditions with little health and environmental burden. These advantageous qualities have led to the prolific use of enzyme catalysis in pharmaceutical, detergents, and food preservation industries wherein their use has greatly reduced waste generation, Unfortunately, the full slate of benefits that enzymes can impart to a broader range of chemical processes is …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere Jul 2021

Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere

Graduate Theses and Dissertations

Porous polymer membrane filters are widely used in separation and filtration process. Micro- and ultra-filtration membranes are commonly used in biopharmaceutical applications such as filtering viruses and separating proteins from a carrier solution. The formation of these membrane filters via phase inversion is a complex and interconnected process where varying casting conditions can have a wide variety of effects on the final membrane morphol- ogy. Tailoring membrane filters for specific performance characteristics is a tedious and time consuming process. The time and length scales of membrane formation make it extremely difficult to experimentally observe membrane formation. Modeling the membrane formation …


Investigation Of Membrane Based Processes For Biomedical Applications, Efecan Pakkaner Jul 2021

Investigation Of Membrane Based Processes For Biomedical Applications, Efecan Pakkaner

Graduate Theses and Dissertations

As substantial developments were achieved in nanotechnology and polymer engineering, especially in the last few decades, the use of membranes and membrane-based procedures was found to be expanding into more and more research and development areas; including biological engineering, life sciences and biomedical engineering. Not only have they been the main focus of meaningful research, but they have also been the main pieces of the solutions to very thorny problems encountered within a wide range of applications from microfluidics to water treatment, thanks to their versatility, cost-effectiveness and biocompatibility, when compared to conventional separation techniques. To celebrate and embrace these …


Nanohybrid Membrane Synthesis With Phosphorene Nanoparticles: A Study Of The Addition, Stability And Toxicity, Joyner Eke, Philip Alexander Mills, Jacob Ryan Page, Garrison P. Wright, Olga V. Tsyusko, Isabel C. Escobar Jul 2020

Nanohybrid Membrane Synthesis With Phosphorene Nanoparticles: A Study Of The Addition, Stability And Toxicity, Joyner Eke, Philip Alexander Mills, Jacob Ryan Page, Garrison P. Wright, Olga V. Tsyusko, Isabel C. Escobar

Center of Membrane Sciences Faculty Publications

Phosphorene is a promising candidate as a membrane material additive because of its inherent photocatalytic properties and electrical conductance which can help reduce fouling and improve membrane properties. The main objective of this study was to characterize structural and morphologic changes arising from the addition of phosphorene to polymeric membranes. Here, phosphorene was physically incorporated into a blend of polysulfone (PSf) and sulfonated poly ether ether ketone (SPEEK) doping solution. Protein and dye rejection studies were carried out to determine the permeability and selectivity of the membranes. Since loss of material additives during filtration processes is a challenge, the stability …


Peptoid And Antibody-Based Gfp Sensors, Solomon Isu May 2020

Peptoid And Antibody-Based Gfp Sensors, Solomon Isu

Graduate Theses and Dissertations

In this work, we have made and characterized a pair of immunobiosensors for detecting the green fluorescent protein (GFP) in an aqueous matrix. An anti-GFP antibody-based biosensor was assembled to detect GFP, while a novel peptoid (N-substituted oligomers of glycine designated as IOS-1) biosensor was also assembled for GFP detection. A quartz crystal microbalance (QCM) gold sensor was used as the supporting substrate for self-assembly of the immunobiosensors. Gravimetric measurements of the QCM gold sensor during immunobiosensor construction and operation were available in real-time using a QCM instrument. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Fluorescence microscopy were used …


Pollution Prevention Via Recovery Of Cerium (Iv) Oxide In Optics Company, Eugene Park, William Gallagher, Sydor Optics, Flint Creek Resources May 2020

Pollution Prevention Via Recovery Of Cerium (Iv) Oxide In Optics Company, Eugene Park, William Gallagher, Sydor Optics, Flint Creek Resources

Articles

Pollution prevention methods were applied at an optics manufacturer in an effort to improve recovery of a valuable polishing component, cerium oxide (ceria), 77% of which was lost to dragout and sewer discharge. Centrifugation and microfiltratiion were evaluated to develop a process that would increase recovery of used ceria, which would then be sent back to the ceria supplier for reclamation and reuse. Full-scale implementation included a high-speed centrifuge that operates continuously with a microfiltration system through recirculation in a single process tank. Sydor Optics has improved ceria recovery from 23% to 48%, saving thousands of dollars annually.


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht Jun 2019

Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht

Materials Engineering

In theory single walled carbon nanotubes (SWCNT) will aid in ion rejection due hydrophobicity and smoothness of the SWCNT. An efficient means of water desalination utilizing SWCNT in a membrane seems plausible. A lyotropic liquid crystal (LLC) solution was made with a synthesized polymerizable surfactant methacryloxy ethyl hexadecyl dimethyl ammonium bromide (C16MA) to help with vertical alignment of SWCNT. Due to SWCNT lack of solubility and tendency to agglomerate in water, a dispersion performed using an inert surfactant centrimonium bromide (CTAB) to make sure that the SWCNT were homogeneously dispersed in the solution without altering the hexagonal packing factor of …


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli Mar 2019

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications. Pore narrowing …


Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal Nov 2018

Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal

FIU Electronic Theses and Dissertations

In this research, a proton exchange membrane fuel cell (PEMFC) sensor was investigated for specific detection of volatile organic compounds (VOCs) for point-of-care (POC) diagnosis of the physiological conditions of humans. A PEMFC is an electrochemical transducer that converts chemical energy into electrical energy. A Redox reaction takes place at its electrodes whereas the volatile biomolecules (e.g. ethanol) are oxidized at the anode and ambient oxygen is reduced at the cathode. The compounds which were the focus of this investigation were ethanol (C2H5OH) and isoflurane (C3H2ClF5O), but theoretically, the sensor …


Review Of Challenges And Advances In Modification Of Food Package Headspace Gases, Ziynet Boz, Bruce A. Welt, Jeffrey K. Brecht, William Pelletier, Eric Mclamore, Gregory A. Kiker, Jason E. Butler Apr 2018

Review Of Challenges And Advances In Modification Of Food Package Headspace Gases, Ziynet Boz, Bruce A. Welt, Jeffrey K. Brecht, William Pelletier, Eric Mclamore, Gregory A. Kiker, Jason E. Butler

Journal of Applied Packaging Research

Modified Atmosphere Packaging (MAP) has been widely used as an effective way to preserve foods. Fresh produce, meat and meat products, seafood, and dairy products can benefit from modified gaseous atmospheres, which are usually achieved by reducing oxygen and increasing carbon dioxide concentrations, within limits, defined by product tolerances. MAP of fresh produce is particularly challenging because products are living and respiring. Respiration rates depend on several factors including temperature, oxygen, and carbon dioxide concentrations. Balancing package permeation with respiration is challenging, often due to limited selection of practical packaging materials. Failing to remain within tolerance limits of products leads …


Mixed Matrix Flat Sheet And Hollow Fiber Membranes For Gas Separation Applications, Nicholas W. Linck Jan 2018

Mixed Matrix Flat Sheet And Hollow Fiber Membranes For Gas Separation Applications, Nicholas W. Linck

Theses and Dissertations--Chemical and Materials Engineering

Mixed matrix membranes (MMM) offer one potential path toward exceeding the Robeson upper bound of selectivity versus permeability for gas separation performance while maintaining the benefits of solution processing. Many inorganic materials, such as zeolites, metal-organic frameworks, or carbon nanotubes, can function as molecular sieves, but as stand-alone membranes are brittle and difficult to manufacture. Incorporating them into a more robust polymeric membrane matrix has the potential to mitigate this issue.

In this work, phase inversion polymer solution processing for the fabrication and testing of asymmetric flat sheet mixed matrix membranes was employed with CVD-derived multiwall carbon nanotubes (MWCNTs) dispersed …


Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya Dec 2017

Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

New and advanced opportunities are arising for the synthesis and functionalization of membranes with selective separation, reactivity, and stimuli-responsive behavior. One such advancement is the integration of bio-based channels in membrane technologies. By a layer-by-layer (LbL) assembly of polyelectrolytes, outer membrane protein F trimers (OmpF) or “porins” from Escherichia coli with central pores ∼2 nm in diameter at their opening and ∼0.7 × 1.1 nm at their constricted region are immobilized within the pores of poly(vinylidene fluoride) microfiltration membranes, in contrast to traditional ruptured lipid bilayer or vesicle processes. These OmpF-membranes demonstrate selective rejection of non-charged organics over ionic solutes, …


Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin Dec 2017

Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin

Electronic Theses and Dissertations

Gas analysis is an important part of our world and gas sensing technology is becoming more essential for various aspects of our life. A novel approach for gas mixture analysis by using portable gas chromatography in combination with an array of highly integrated and selective metal oxide (MOX) sensors has been studied. We developed a system with small size (7 x 13 x 16 inches), low power consumption (~10 W) and absence of special carrier gases designed for portable field analysis (assuming apriori calibration). Low ppb and even sub-ppb level of detection for some VOCs was achieved during the analysis …


Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani Oct 2017

Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani

FIU Electronic Theses and Dissertations

The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains as the leading cause for rapid capacity fading and poor cyclability in Li-O2 batteries. In this …


Membranes For Food And Bioproduct Processing, Alexandru Marius Avram Aug 2017

Membranes For Food And Bioproduct Processing, Alexandru Marius Avram

Graduate Theses and Dissertations

Modified membranes for process intensification in biomass hydrolysis

Production of biofuels and chemicals from lignocellulosic biomass is one of the leading candidates for replacement of petroleum based fuels and chemicals. However, conversion of lignocellulosic biomass into fuels and chemicals is not cost effective compared to the production of fuels and chemicals from crude oil reserves. Some novel and economically feasible approaches involve the use of ionic liquids as solvents or co-solvents, since these show improved solvation capability of cellulose over simple aqueous systems. Membranes offer unique opportunities for process intensification which involves fractionation of the resulting biomass hydrolysate leading to …


Liquid Gating Ptfe Membranes To Reduce Fouling, Jonathan C. Overton May 2017

Liquid Gating Ptfe Membranes To Reduce Fouling, Jonathan C. Overton

Electronic Theses and Dissertations

In the processing industry, fouling due to the accumulation of bioparticles or bacteria on the surface of membranes results in decreased capacity, and subsequently requires filtration membranes to require periodic cleaning, causing increased operating costs. In this work, we evaluate the recently discovered concept of liquid-gated membranes (LGMs) in both filtration characteristics, as well as their ability to facilitate passive cleaning of membranes fouled with whey proteins. Additionally, we show that biofilms formed on the surface of these membranes can be removed through exposure to an air-water interface through a simple dipping step. We further analyze the mechanisms of fouling …


Functionalization Of Silver Nanoparticles On Membranes And Its Influence On Biofouling, Conor G. Sprick Jan 2017

Functionalization Of Silver Nanoparticles On Membranes And Its Influence On Biofouling, Conor G. Sprick

Theses and Dissertations--Chemical and Materials Engineering

Ultrafiltration (UF) processes are often used as pretreatment before more retentive/costly processes, such as nanofiltration and reverse osmosis. This study shows the results of low-biofouling nanocomposite membranes, loaded with casein-coated silver nanoparticles (casein-Ag-NPs). Membranes were cast and imbedded with Ag-NPs using two approaches, physical blending of Ag-NPs in the dope solution (PAg-NP/CA membranes) and chemical attachment of Ag-NPs to cast membranes (CAg-NP/CA membranes), to determine their biofouling control properties. The functionalization of Ag-NPs onto the CA membranes was achieved via attachment with functionalized thiol groups with the use of glycidyl methacrylate (GMA) and cysteamine chemistries. The …


Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra Jan 2017

Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra

Theses and Dissertations--Chemical and Materials Engineering

Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes.

Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these …