Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Membrane Science

Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal Nov 2018

Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal

FIU Electronic Theses and Dissertations

In this research, a proton exchange membrane fuel cell (PEMFC) sensor was investigated for specific detection of volatile organic compounds (VOCs) for point-of-care (POC) diagnosis of the physiological conditions of humans. A PEMFC is an electrochemical transducer that converts chemical energy into electrical energy. A Redox reaction takes place at its electrodes whereas the volatile biomolecules (e.g. ethanol) are oxidized at the anode and ambient oxygen is reduced at the cathode. The compounds which were the focus of this investigation were ethanol (C2H5OH) and isoflurane (C3H2ClF5O), but theoretically, the sensor …


Review Of Challenges And Advances In Modification Of Food Package Headspace Gases, Ziynet Boz, Bruce A. Welt, Jeffrey K. Brecht, William Pelletier, Eric Mclamore, Gregory A. Kiker, Jason E. Butler Apr 2018

Review Of Challenges And Advances In Modification Of Food Package Headspace Gases, Ziynet Boz, Bruce A. Welt, Jeffrey K. Brecht, William Pelletier, Eric Mclamore, Gregory A. Kiker, Jason E. Butler

Journal of Applied Packaging Research

Modified Atmosphere Packaging (MAP) has been widely used as an effective way to preserve foods. Fresh produce, meat and meat products, seafood, and dairy products can benefit from modified gaseous atmospheres, which are usually achieved by reducing oxygen and increasing carbon dioxide concentrations, within limits, defined by product tolerances. MAP of fresh produce is particularly challenging because products are living and respiring. Respiration rates depend on several factors including temperature, oxygen, and carbon dioxide concentrations. Balancing package permeation with respiration is challenging, often due to limited selection of practical packaging materials. Failing to remain within tolerance limits of products leads …


Mixed Matrix Flat Sheet And Hollow Fiber Membranes For Gas Separation Applications, Nicholas W. Linck Jan 2018

Mixed Matrix Flat Sheet And Hollow Fiber Membranes For Gas Separation Applications, Nicholas W. Linck

Theses and Dissertations--Chemical and Materials Engineering

Mixed matrix membranes (MMM) offer one potential path toward exceeding the Robeson upper bound of selectivity versus permeability for gas separation performance while maintaining the benefits of solution processing. Many inorganic materials, such as zeolites, metal-organic frameworks, or carbon nanotubes, can function as molecular sieves, but as stand-alone membranes are brittle and difficult to manufacture. Incorporating them into a more robust polymeric membrane matrix has the potential to mitigate this issue.

In this work, phase inversion polymer solution processing for the fabrication and testing of asymmetric flat sheet mixed matrix membranes was employed with CVD-derived multiwall carbon nanotubes (MWCNTs) dispersed …