Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 1 - 30 of 257

Full-Text Articles in Chemical Engineering

Assessing The Feasibility And Mechanism Of Destructive Removal Of Per- And Polyfluoroalkyl Substances (Pfas) From Water, Kaushik Vinaykumar Londhe Dec 2023

Assessing The Feasibility And Mechanism Of Destructive Removal Of Per- And Polyfluoroalkyl Substances (Pfas) From Water, Kaushik Vinaykumar Londhe

Dissertations

One of the most pertinent challenges faced by the drinking water community is the widespread contamination of per- and polyfluoroalkyl substances (PFAS). These anthropogenic chemicals have been ubiquitously used in everyday products such as carpets, stain repellents, dyes, shampoos, non-stick cookware as well as in aqueous firefighting foams. PFAS are linked with adverse health effects in humans such as thyroid disease, obesity, immunological and reproductive disorders and linked to cancer in adults and low birth weight and developmental defects in infants.

Conventional water treatment technologies have proven to be largely ineffective in PFAS remediation, due to their extreme stability and …


Using Afm-Ir To Study Nanoscopic Phase Behavior Of Polymer Blends And Photovoltaic Bulk Heterojunctions, Nathaniel L. Prine Dec 2023

Using Afm-Ir To Study Nanoscopic Phase Behavior Of Polymer Blends And Photovoltaic Bulk Heterojunctions, Nathaniel L. Prine

Dissertations

Conjugated polymers (CPs) and polymer blends harbor the potential for high-performance organic solar cells (OSCs) due to their short energy payback time, low cost, solution processability, lightweight attributes, and flexibility. However, OSCs suffer from poor thermal stability compared to their inorganic equivalents. This study explores the thermal instability of OSCs, focusing on phase separation of the photoactive layer under heat, resulting in morphology changes and degradation of power conversion efficiency (PCE). Utilizing atomic-force microscopy coupled with infrared spectroscopy (AFM-IR) and differential scanning calorimetry (DSC), we delve into thermal stability-morphology relationships to devise strategies to improve OSC blend durability under thermal …


Synthesis Of Glucomannan-Xylan Composite Biofilms: Characterization And Applications For Food Packaging, Kholoud Al-Ajlouni Dec 2023

Synthesis Of Glucomannan-Xylan Composite Biofilms: Characterization And Applications For Food Packaging, Kholoud Al-Ajlouni

Dissertations

Scientists are most concerned about the need for green alternatives for efficient food packaging polymers to replace petroleum-based packaging products. The waste of corn cobs and the roots of the konjac plant contain hemicellulose, xylan and glucomannan respectively, and can be used to produce biofilms for food packaging.

The aim of these studies is to formulate biofilms from glucomannan-xylan blends that compete with petroleum-based plastic wrap. The biofilms must be strong, smooth, transparent, have a water vapor barrier, have the required mechanical properties and be cheap. Biofilms from glucomannan were stiff, lacked mechanical properties, and absorbed moisture. Therefore, it reacts …


Bacterial Motion And Spread In Porous Environments, Yasser Almoteri Aug 2023

Bacterial Motion And Spread In Porous Environments, Yasser Almoteri

Dissertations

Micro-swimmers are ubiquitous in nature from soil and water to mammalian bodies and even many technological processes. Common known examples are microbes such as bacteria, micro-algae and micro-plankton, cells such as spermatozoa and organisms such as nematodes. These swimmers live and have evolved in multiplex environments and complex flows in the presence of other swimmers and types, inert particles and fibers, interfaces and non-trivial confinements and more. Understanding the locomotion and interactions of these individual micro-swimmers in such impure viscous fluids is crucial to understanding the emergent dynamics of such complex systems, and to further enabling us to control and …


Cu/Bnx Catalysts For Electrocatalytic Reduction Of Nitrogen And Nitrate Waste, Siming Huo May 2023

Cu/Bnx Catalysts For Electrocatalytic Reduction Of Nitrogen And Nitrate Waste, Siming Huo

Dissertations

Ammonia (NH3) is one of the most important chemicals to the whole human society. The invention of the Haber-Bosch process enabled the industrial production of NH3. However, owing to the high capital costs of the centralized plant and the equipment and the negative environmental impact, it is no longer suitable for today's needs of human development. As a result, there is an urgent need to investigate sustainable approaches for ammonia production. Among those reported studies, nitrogen reduction (NRR) and nitrate reduction reaction (NO3RR) are considered applicable in the future. However, after decades of studying …


Pbm And Dem Simulations Of Large-Scale Closed-Circuit Continuous Ball Mill Of Cement Clinker, Nontawat Muanpaopong May 2023

Pbm And Dem Simulations Of Large-Scale Closed-Circuit Continuous Ball Mill Of Cement Clinker, Nontawat Muanpaopong

Dissertations

Cement milling is known to be inefficient and energy-intensive. Thus, even small improvements in cement milling's performance could significantly reduce operation costs. This dissertation aims to develop a simulation tool for dry milling and generate a fundamental process understanding, which enables process optimization. To this end, a true unsteady-state simulator (TUSSIM) for continuous dry milling is developed and applied to model various processes: (a) open circuit continuous mills, (b) closed-circuit continuous mills, and (c) vertical roller mills. TUSSIM is based on the solution of the cell-based population balance model (PBM) for continuous milling, which consists of a set of differential …


Faceted Nanomaterial Synthesis, Characterizations And Applications In Reactive Electrochemical Membrane Filtration, Qingquan Ma Dec 2022

Faceted Nanomaterial Synthesis, Characterizations And Applications In Reactive Electrochemical Membrane Filtration, Qingquan Ma

Dissertations

Facet engineering of nanomaterials, especially metals and metal oxides has become an important strategy for tuning catalytic properties and functions from heterogeneous catalysis to electrochemical catalysis, photocatalysis, biomedicine, fuel cells, and gas sensors. The catalytic properties are highly related to the surface electronic structures, surface electron transport characteristics, and active center structures of catalysts, which can be tailored by surface facet control. The aim of this doctoral dissertation research is to study the facet-dependent properties of metal or metal oxide nanoparticles using multiple advanced characterization techniques. Specifically, the novel atomic force microscope-scanning electrochemical microscope (AFM-SECM) and density functional theory (DFT) …


Hydrodynamic Investigation Of The Discharge Of Complex Fluids From Dispensing Bottles Using Experimental And Computational Approaches, Baran Teoman Dec 2022

Hydrodynamic Investigation Of The Discharge Of Complex Fluids From Dispensing Bottles Using Experimental And Computational Approaches, Baran Teoman

Dissertations

The discharge of non-Newtonian, complex fluids through orifices of industrial tanks, pipes, dispensers, or packaging containers is a ubiquitous but often problematic process because of the complex rheology of such fluids and the geometry of the containers. This, in turn, reduces the discharge rate and results in residual fluid left in the container, often referred to as heel. Heel formation is undesired in general, since it causes loss of valuable material, container fouling, and cross-contamination between batches. Heel may be of significant concern not only in industrial vessels but also in consumer packaging. Despite its relevance, the research in this …


Microhydrodynamic, Kinetic And Thermal Modeling Of Wet Media Milling For Process Optimization And Intensification, Gulenay Guner Dec 2022

Microhydrodynamic, Kinetic And Thermal Modeling Of Wet Media Milling For Process Optimization And Intensification, Gulenay Guner

Dissertations

Nanoparticle production by wet stirred media milling (WSMM) is a common method for the formulation of poorly water-soluble drugs. While most of the studies in the WSMM literature focus on the formulation aspects to overcome the stability challenges, a thorough mechanistic understanding of the process is lacking, and the process is slow, costly, and energy-intensive. This dissertation presents experimental and modeling work with the ultimate goals of (i) gaining a deeper and more mechanistic understanding of the WSMM process and breakage kinetics of the particles using a microhydrodynamic model with various improvements and advancements, (ii) examining the heat dissipation during …


Study Of Sustainable Development In Paper, Printing And Packaging Material Applications To Support Circular Economy, Prashant Ramesh Kotkar Dec 2022

Study Of Sustainable Development In Paper, Printing And Packaging Material Applications To Support Circular Economy, Prashant Ramesh Kotkar

Dissertations

To support circular economy and sustainability, the use of suitable material in paper, printing, and packaging industries, for several types of industrial printing material and printed product applications, plays a significant role for end user applications. Several types of packaging printing materials, specifically those finished with different printing technologies and exposed to different environmental conditions are targeted.

The purpose of this research study is to improve design and evaluation for paper, printing, and packaging material sustainability in end-user applications, to deal with the addressed sustainability issues brought by the paper, printing and packaging products end user groups. As the impacts …


Effect Of Current Density Ramping On The Anodic Reaction And Morphology Of Aerospace Aluminum Alloys, Peter Totaro Jr. Aug 2022

Effect Of Current Density Ramping On The Anodic Reaction And Morphology Of Aerospace Aluminum Alloys, Peter Totaro Jr.

Dissertations

Aluminum anodizing has been experimented with and studied over the last century because of its ability to form uniform, well ordered cellular coatings on aluminum alloys. Anodizing aerospace alloys has been problematic, due to the alloying elements used to add strength and resistance to stress cracking corrosion. These intermetallic compounds, i.e., copper and zinc, promote oxygen evolution and stress as they accumulate in and on the surface of the forming aluminum oxide. These inclusions lead to increased electrical resistance that forms porous and flawed coating, which can lead to industrial and field failures. The amount of voltage placed on the …


Effect Of Process Control Agents Used In Mechanochemical Synthesis On Properties Of The Prepared Composite Reactive Materials, Mehnaz Mursalat May 2022

Effect Of Process Control Agents Used In Mechanochemical Synthesis On Properties Of The Prepared Composite Reactive Materials, Mehnaz Mursalat

Dissertations

The study explores synthesis and reactivity of new reactive materials prepared by ball milling. High-energy ball milling became a ubiquitous mechano-chemical tool to manufacture diverse powders, from pharmaceuticals or foods to alloys to new solid rocket propellants. It enabled a dramatic expansion of the range of chemical compositions obtainable; however, it did not so far, allowed one to fine-tune morphology or interfaces in the generated powders. It is shown in this work how different process control agents (PCAs) can serve to tune the powder morphology and reactivity. Commonly used as lubricants and cooling agents during milling, liquid PCAs can be …


Understanding The Interfacial Processes Of Reactive Nanobubbles Toward Agricultural Applications, Xiaonan Shi May 2022

Understanding The Interfacial Processes Of Reactive Nanobubbles Toward Agricultural Applications, Xiaonan Shi

Dissertations

There is a growing interest in nanobubble (NB) technology because of its diverse applications (e.g., detergent-free cleaning, water aeration, ultra-sound imaging and intracellular drug delivery, and mineral processing). NBs have a higher efficiency of mass transfer compared to bulk scale bubbles due to the high specific surface areas. The high specific surface also facilitates physical adsorption and chemical reactions in the gas liquid interface. Furthermore, the collapse of NBs creates shock waves and the formation of hydroxyl radicals (OH).

However, it remains elusive why or how NBs are stabilized in water and particularly, the states of internal pressures of NBs …


Atmospheric Mercury Chemistry: Detection, Kinetics, And Mechanism, Na Mao May 2022

Atmospheric Mercury Chemistry: Detection, Kinetics, And Mechanism, Na Mao

Dissertations

The presence of mercury in the environment is of global concern due to its toxicity. The atmosphere is an important transient reservoir for mercury released by human activities and natural sources. The knowledge of atmospheric mercury chemistry is critical for understanding the global biogeochemical cycle. In the atmosphere, mercury primarily exists in three forms: gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM). Over the last decade, the existing knowledge of mercury cycle has dramatically changed: (1) There has been increasing evidence that current detection methods do not accurately quantify gaseous oxidized mercury and a technique which …


Receptor-Doped Organic Transistors: Transducing Anion Binding From Mixed Ionic-Electronic Transport, Anthony Benasco May 2022

Receptor-Doped Organic Transistors: Transducing Anion Binding From Mixed Ionic-Electronic Transport, Anthony Benasco

Dissertations

Organic semiconductors based on π-conjugated polymers show remarkable properties such as high tolerance to structural defects, low processing temperature requirements, biocompatibility, ease of fabrication, and tunable properties. Conjugated polymers integrated into device arrays can exhibit collective properties sensitive to minor perturbations in the surrounding media. However, these devices rely on serendipitous sensitivity to the analyte of interest, and strategies for specific detection remain a considerable change. There remains a compelling, global need for technologies to monitor phosphate due to its prevalence in agricultural runoff, leading to fish kills and economic decline for commercial and recreational fisheries. The strong hydration energies …


Membrane Bioreactor For Enhanced Enzymatic Hydrolysis Of Cellulose, Saleha Abdullah Al-Mardeai May 2022

Membrane Bioreactor For Enhanced Enzymatic Hydrolysis Of Cellulose, Saleha Abdullah Al-Mardeai

Dissertations

With the rising environmental concerns related to fossil fuels utilization and the depletion of these resources, interest in bioethanol from lignocellulosic waste as an alternative, sustainable energy source has been increasing. Date palm waste is considered a good feedstock for bioethanol production, especially in countries of large date palm plantations, such as the United Arab Emirates.

In the lignocellulose to bioethanol process, the enzymatic hydrolysis of celluloses to produce simple sugars that can be converted to bioethanol by fermentation is the most challenging step, and enhancing it is essential for efficient and feasible operation. Enzyme inhibition by the products is …


Koh-Based Modified Solvay Process: Optimization And Kinetics Studies, Aya Abdel-Hamid Mourad May 2022

Koh-Based Modified Solvay Process: Optimization And Kinetics Studies, Aya Abdel-Hamid Mourad

Dissertations

While desalination of seawater is important for meeting the water demand, the technology produces large volumes of reject brine and CO2, causing environmental pollution. Solvay process (based on ammonia, NH3) and modified Solvay process (based on calcium oxide, CaO) try to manage these wastes. However, more attention is needed to overcome different limitations of these processes such as, alkaline solubility, operating temperature, maintaining high pH value, and low sodium (Na+) removal efficiency, which does not exceed 35%. The aim of this work is to introduce an alternative alkaline, namely potassium hydroxide (KOH) and investigate …


A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu Dec 2021

A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu

Dissertations

Distillation of aqueous solutions and aqueous mixtures has vast industrial applications, including desalination, wastewater treatment, and fruit juice concentration. Currently, two major distillation technologies are adopted in the industry, membrane separation and thermal distillation. However, both of them face certain inevitable drawbacks. Membrane separation has disadvantages as relying on high-grade energy, requiring membrane, fouling problem, narrow treatment range, limited scalability, and vibrating and noisy operating conditions. Traditional thermal distillation technologies can avoid above concerns but has other shortcomings, such as relatively low energy efficiency and yield rate, complicated and bulky system structure, and scaling problem.

This project proposes an innovative …


Electric-Field-Driven Processes In Multiphase Fluid Systems, Qian Lei Dec 2021

Electric-Field-Driven Processes In Multiphase Fluid Systems, Qian Lei

Dissertations

Advantages of using electric fields in miniaturized apparatuses for a wide range of applications are revealed by numerous experimental and theoretical studies over the last several decades as it offers a simple and efficient method for manipulation of multiphase fluid systems. This approach is considered to be especially beneficial for control of boiling processes and colloidal suspensions considered in the presented work.

Boiling. Today's trends for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles to prevent formation of a vapor layer over the surface at a high overheat. In contrast, this dissertation presents a …


Multi Stage Modified Solvay Process For Co2 Capture And Reject Brine Desalination, Ameera Fares Mohammad Dec 2021

Multi Stage Modified Solvay Process For Co2 Capture And Reject Brine Desalination, Ameera Fares Mohammad

Dissertations

Brine management is an environmental concern, as many desalination plants need to find suitable approaches for the treatment or disposal of the large amounts of concentrated brine that are produced. Many conventional methods are used such as disposal through deep well injection, but these methods still suffer from many drawbacks. An alternative approach is to further process the brine by extracting the salts through reactions with carbon dioxide. The chemical reactions of reject brine with high alkalinity products and carbon dioxide are postulated to constitute a new, effective, economic and environmentally friendly approach. On the other hand, a major challenge …


Advances In Modeling Gas Adsorption In Porous Materials For The Characterization Applications, Max A. Maximov Aug 2021

Advances In Modeling Gas Adsorption In Porous Materials For The Characterization Applications, Max A. Maximov

Dissertations

The dissertation studies methods for mesoporous materials characterization using adsorption at various levels of scale and complexity. It starts with the topic introduction, necessary notations and definitions, recognized standards, and a literature review.

Synthesis of novel materials requires tailoring of the characterization methods and their thorough testing. The second chapter presents a nitrogen adsorption characterization study for silica colloidal crystals (synthetic opals). These materials have cage-like pores in the range of tens of nanometers. The adsorption model can be described within a macroscopic approach, based on the Derjaguin-Broekhoff-de Boer (DBdB) theory of capillary condensation. A kernel of theoretical isotherms is …


Shale Softening Based On Pore Network And Laboratory Investigations, Di Zhang Aug 2021

Shale Softening Based On Pore Network And Laboratory Investigations, Di Zhang

Dissertations

This dissertation consists of two major parts: Firstly, experimental investigation of four major shale softening mechanisms and quantifications of structural parameters. Secondly, numerical simulations of nano-scale flow behaviors using the previous experiments determined parameters based on modified pore network modeling.

Hydraulic fracturing is widely applied to economical gas production from shale reservoirs. Still, the gradual swelling of the clay micro/nano-pores due to retained fluid from hydraulic fracturing causes a gradual reduction of gas production. Four different gas-bearing shale samples are investigated to quantify the expected shale swelling due to hydraulic fracturing. These shale samples are subject to heated deionized (DI) …


Feedstock Powders For Reactive Structural Materials, Daniel Hastings Aug 2021

Feedstock Powders For Reactive Structural Materials, Daniel Hastings

Dissertations

Metals as fuels have higher energy density per unit mass or volume compared to any hydrocarbon. At the same time, metals are common structural materials. Exploring metals as reactive structural materials may combine their high energy density with attractive mechanical properties. Preparing such materials, however, is challenging. Requirements that need to be met for applications include density, strength, and stability enabling the component to sustain the structure during its desired operation; added requirements are the amount and rate of the energy release upon impact or shock. Powder technology and additive manufacturing are approaches considered for design of reactive structural materials. …


Towards Quality By Design (Qbd) Of Pharmaceutical Oral Films Loaded With Poorly Watersoluble Drugs, Eylul Cetindag Aug 2021

Towards Quality By Design (Qbd) Of Pharmaceutical Oral Films Loaded With Poorly Watersoluble Drugs, Eylul Cetindag

Dissertations

Oral films are an emerging drug delivery dosage form with numerous advantages such as ease of handling, the possibility to circumvent the first-pass metabolism, better patient compliance, capability for continuous manufacturing, and as a platform for personalized medicine. As films are different from other final dosages by their dimensions and their matrix form, further research is required to better understand the impact of excipient and drug on product performance to assure a consistent and good quality product. Therefore, this dissertation aims to contribute towards the processability and manufacturability of films by examining the impact of the materials and processes. First, …


Exploring Fused Deposition Modeling (Fdm) Three-Dimensional Printing Tablet Design Options For Pharmaceutical Dosage Forms, Guluzar Gorkem Buyukgoz Aug 2021

Exploring Fused Deposition Modeling (Fdm) Three-Dimensional Printing Tablet Design Options For Pharmaceutical Dosage Forms, Guluzar Gorkem Buyukgoz

Dissertations

This dissertation examines the use of Fused Deposition Modeling (FDM) based three-dimensional (3D) printing approach for developing patient-specific dosage forms and addressing related technical challenges in such drug delivery systems. The first main objective is to explore pharmaceutical tablet design options using novel FDM 3D printing technology as the drug delivery platform such that drug form and tablet properties are tailored by considering patient age-specific formulations and dissolution control. Of the five different design options, two proposed options meet the main objective of providing similar drug release, whereas the popular option of fixed drug concentration but differing tablet size could …


Epoxy Curing: Paramount Or Trivial? A Cure Path Dependent Inquiry, Jared Bates Jul 2021

Epoxy Curing: Paramount Or Trivial? A Cure Path Dependent Inquiry, Jared Bates

Dissertations

The presented research delves into epoxy network formation corroborating reactant concentration profiles and physical property development throughout cure, providing an experimental basis for burgeoning molecular dynamics and coarse-grained simulation methodologies. Herein, three primary subjects were investigated: the first two examine neat and toughened epoxide/amine network formation with respect to various cure profiles aimed at altering reaction pathways, the final chapter intends to augment traditionally utilized activation energy (Ea) methodologies.

Neat and toughened epoxide/amine slurries were monitored in-situ throughout cure via near infrared (NIR) spectroscopy and rheological techniques. Functional group conversion and moduli development were related with specific attention …


Fluorine-Based Inorganic Oxidizers For Use In Metal-Based Reactive Materials, Siva Kumar Valluri May 2021

Fluorine-Based Inorganic Oxidizers For Use In Metal-Based Reactive Materials, Siva Kumar Valluri

Dissertations

This work explores inorganic fluorides as oxidizers for fuel-rich reactive materials. A preliminary assessment of metal fluorides accounting for their enthalpy of formation points to bismuth (III) fluoride, BiF3 and cobalt (II) fluoride, CoF2 as oxidizers of interest. Initially, composite powders of aluminum with chosen fluorides at 50-50 wt. % are prepared by arrested reactive milling. Despite an increase in reactivity and lowtemperature ignition, the prepared composite powders are insensitive to initiation by electro-static discharge (ESD), making them attractive alternative to analogous thermites having very high ESD sensitivity. In air, the composite powder particles burn faster than reference aluminum particles …


Conversion Of Lignocellulose Biomass From Date Palm Waste To High Value Chemicals, Emmanuel Galiwango Apr 2021

Conversion Of Lignocellulose Biomass From Date Palm Waste To High Value Chemicals, Emmanuel Galiwango

Dissertations

Lignocellulose biomass has gained growing popularity because of its low cost of production compared to food crops, it solves problems of food and energy security, can grow in various climates and land, and it is CO2 neutral. Date palm trees produce large amounts of fibrous wastes that are good sources of lignocellulose. There are over 40 million date palm trees in UAE and most of their lignocellulosic wastes (i.e., leaves, surface fibers, bunches, etc.) are currently used for low value applications such as compost or electric generation. However, the lignocellulosic components of this waste stream have the potential to …


Development Of Novel Inks And Approaches For Printing Tissues And Organs, Shen Ji Dec 2020

Development Of Novel Inks And Approaches For Printing Tissues And Organs, Shen Ji

Dissertations

Tissue engineering is a multidisciplinary field that investigates and develops new methods to repair, regenerate and replace damaged tissues and organs, or to develop biomaterial platforms as in vitro models. Tissue engineering approaches require the fabrication of scaffolds using biomaterials or fabrication of living tissues using cells. As the demands of customized, implantable tissue/organs are increasing and becoming more urgent, conventional scaffold fabrication approaches are difficult to meet the requirements, especially for complex large-scale tissue fabrication. In this regard, three-dimensional (3D) printing attracted more interest over the past decades due to its unrivaled ability to fabricate highly customized tissues or …


The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu Dec 2020

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu

Dissertations

The main goal of this dissertation is to generate data and parameterizations to accurately represent soot aerosols in atmospheric models. Soot from incomplete combustion of fossil fuels and biomass burning is a major air pollutant and a significant contributor to climate warming. The environmental impacts of soot are strongly dependent on the particle morphology and mixing state, which evolve continuously during atmospheric transport via a process known as aging. To make predictions of soot impacts on the environment, most atmospheric models adopt simplifications of particle structure and mixing state, which lead to substantial uncertainties. Using an experimentally constrained modeling approach, …