Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Polymer and Organic Materials

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 73

Full-Text Articles in Biomedical Engineering and Bioengineering

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave Feb 2024

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez Jan 2023

An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez

Electronic Theses and Dissertations

Additive manufacturing technologies have been enhanced throughout the years yet have surprised the manufacturing industry due to their high-end surface finish and dimensional accuracy. Different experiments have been done to identify a specific phenomenon known in the vat-polymerization field. Distortion and dimensional inaccuracy tend to affect the overall properties of the process, either physical or chemical. This approach allows the understanding of how the physical properties have been affected and how to study the chemical properties to avoid this type of phenomenon. The chemical reaction between polymer and UV light has been studied and experimented with to the point that …


Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle Dec 2022

Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle

Masters Theses

Current orthopedic implants are overwhelmingly composed from metallic materials. These implants show superior mechanical properties, but this can additionally result in stress shielding due to a modulus mismatch between the bone tissue and implanted device. Polymeric implants reduce this stress shielding effect but have much lower mechanical properties, limiting their use. Polylactic acid (PLA) is a widely used biodegradable thermoplastic polymer, however, its use has been limited by the polymer’s mechanical properties and rapid loss of strength during degradation in vivo. Polyether-ether-ketone (PEEK) is another common biocompatible polymer , with chemical and mechanical properties which make it a popular alternative …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Brain Inspired Organic Electronic Devices And Systems For Adaptive Signal Processing, Memory, And Learning., Subhadeep Koner Aug 2022

Brain Inspired Organic Electronic Devices And Systems For Adaptive Signal Processing, Memory, And Learning., Subhadeep Koner

Doctoral Dissertations

A new class of electronic device has emerged which bear the potential for low powered brain like adaptive signal processing, memory, and learning. It is a non-linear resistor with memory coined as memristor. A memristor is a two-terminal electrical device which simultaneously changes its resistance (processing information) and store the resistance state pertaining to the applied power (memory). Therefore, it can collocate memory and processing much like our brain synapse which can save time and energy for information processing. Leveraging stored memory, it can thereby help future engineered systems to learn autonomously from past experiences. There has been a growing …


Characterization Of Thermal Gelation Properties In Bioresorbable Thermally Activated Hydrogel Polymers For Hernia Surgery Applications, Alexander Mayfield Aug 2022

Characterization Of Thermal Gelation Properties In Bioresorbable Thermally Activated Hydrogel Polymers For Hernia Surgery Applications, Alexander Mayfield

All Theses

Hydrogel adhesives are a new class of materials with excellent biocompatibility, which makes them very attractive for biomaterial applications. It has been previously shown that Tetronic T1107, a four-arm poly (propylene oxide)-poly (ethylene oxide) (PPO-PEO) block copolymer, is useful as a chemical crosslinking thermo-responsive hydrogel for bioadhesive applications. The end groups of this polymer are modified with acrylate and N-hydroxysuccinimide (NHS) functional groups. The acrylate end group gives the polymer cohesive properties with long-range chemical crosslinking using dithiothreitol (DTT), while the NHS end group gives the polymer adhesive properties through bonding with amines found in organic tissue. It was found …


Fabrication And Non-Covalent Functionalization And Characterization Of Graphene-Based Devices On Novel Substrate Cadmium Trithiophosphate (Iv) — Cdps, Abayomi Omotola Omolewu Aug 2022

Fabrication And Non-Covalent Functionalization And Characterization Of Graphene-Based Devices On Novel Substrate Cadmium Trithiophosphate (Iv) — Cdps, Abayomi Omotola Omolewu

Graduate Theses and Dissertations

With graphene at the center of several application areas such as sensing, circuits, high-frequency devices for communication systems, etc., it is crucial to understand how the intrinsic properties of devices made from graphene and other materials like platinum and palladium nanoparticles affect the performance of such devices for the specific application area. Many graphene-based devices for different application areas have focused mainly on the material composition of the graphene-based devices and how it affects performance parameters for the specific application. However, it would be insightful to understand how the intrinsic electrical properties of the graphene devices for different applications affect …


Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons May 2022

Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons

Theses and Dissertations

Fatigue testing of stretch sensors often focuses on high amplitude, low-cycle fatigue (LCF) behavior; however, when used for orthopaedic, athletic, or ergonomic assessments, stretch sensors are subjected to low amplitude, high-cycle fatigue (HCF) conditions. As an added layer of complexity, the fatigue testing of stretch sensors is not only focused on the life of the material comprising the sensor, but also on the reliability of the signal produced during the extension and relaxation of the sensor. Research into the development of a smart sock that can be used to measure the range of motion (ROM) of the ankle joint during …


Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling May 2022

Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling

University of New Orleans Theses and Dissertations

Anatomical phantoms used in biomedical education and training benefit greatly from Fused filament fabrication’s (FFF) ability to rapidly produce complex and unique models. Current materials and methods used in FFF have limited ability to accurately produce phantoms that can mimic the radiological properties of multiple biological tissues. This research demonstrates that the CT contrast of FFF produced models can be modified by varying the concentration of bismuth oxide in acrylonitrile butadiene styrene (ABS) filaments and a tunable CT contrast that mimics the CT contrast ranging from fatty tissue to cortical bone using a single composite filament without introducing artificial image …


Synthesis Of Monodisperse Nanoscintillators At High Temperatures For Biomedical Relevant Applications, Eric Zhang May 2022

Synthesis Of Monodisperse Nanoscintillators At High Temperatures For Biomedical Relevant Applications, Eric Zhang

All Dissertations

Luminescent sub-100 nm particulates continuously generate immense research interest in the biomedical field for imaging, theranostics, and optogenetics. Conventionally, upconversion nanoparticles or UV activated semiconductors are studied, however these materials are limited by biological barriers such as the skin which reduces the penetration depth of these excitation sources, tissue's auto- fluorescence, and toxicity. One approach to overcome these challenges is to use nanoscintillators (sub-100 nm materials that can generate visible light using high energy excitation sources such as x-rays) which can generate light locally to the human body. Numerous scintillators have been reported since the discovery of x-rays from the …


Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley May 2022

Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley

All Theses

Nature is frequently turned to for inspiration for the creation of new materials. Insect antennae are hollow, blood-filled fibers with complex shape, and are cantilevered at the head. The antenna is muscle-free, but the insect can controllably flex, twist, and maneuver it laterally. To explain this behavior, a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly) was performed. These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle fibers (Manduca sexta) or strain-adaptive fibers that stiffen when stretched (Vanessa cardui …


Isolation And Production Of Tandem Collagen Binding Domain From Clostridial Collagenase Colg And Developments In C1q Reagent Production For Future Molecule Characterization Work, Stephanie Beitle May 2022

Isolation And Production Of Tandem Collagen Binding Domain From Clostridial Collagenase Colg And Developments In C1q Reagent Production For Future Molecule Characterization Work, Stephanie Beitle

Chemical Engineering Undergraduate Honors Theses

This thesis covers a two part project: the production methods to create a double collagen binding domain molecule with a growth factor for wound healing applications and the development of a new in-house production method for isolating C1q from bovine blood. The wound healing molecule was created using transformation, sonication, and purification before being tested via electrophoresis SDS page and Western blots to confirm the molecule’s presence. The C1q in-house production method utilizes an ultrafiltration flow cell rather than dialysis at a critical point in the process, allowing for researchers to not only be able to use a single small …


Optimization Of A Novel Nipam-Based Thermoresponsive Copolymer For Intramuscular Injection As A Myoblast Delivery Vehicle To Combat Peripheral Artery Occlusive Disease, Quentin R. Klueter Mar 2022

Optimization Of A Novel Nipam-Based Thermoresponsive Copolymer For Intramuscular Injection As A Myoblast Delivery Vehicle To Combat Peripheral Artery Occlusive Disease, Quentin R. Klueter

Master's Theses

There is a need for a minimally invasive delivery method to enable cell therapies to combat peripheral artery occlusive disease (PAOD) in end stage patients. Myoblasts show promise as a cell mediated therapy but warrant an improved delivery method to increase cell retention in the region of interest because of their adherent nature, relative to previously used BM-MNC’s that are non-adherent. Contemporary issues with achieving successful cell therapies of vasculature can be mainly characterized by the lack of clinical translation from promising animal studies and absence of cell delivery scaffolding. Naturally, polymers have been widely experimented with as grafts to …


Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman Jan 2022

Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman

Graduate Theses, Dissertations, and Problem Reports

The specificity and efficiency with which enzymes catalyze selective chemical reactions far exceeds the performance of traditional heterogeneous catalysts that are predominant in industrial applications such as conversion of commodity chemicals to value-added products, fuel cells, and petroleum refinement. Moreover, biocatalysts exhibit exceptionally high product turnover at ambient conditions with little health and environmental burden. These advantageous qualities have led to the prolific use of enzyme catalysis in pharmaceutical, detergents, and food preservation industries wherein their use has greatly reduced waste generation, Unfortunately, the full slate of benefits that enzymes can impart to a broader range of chemical processes is …


Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles Sep 2021

Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles

Dissertations, Theses, and Capstone Projects

Hypersurface Photolithography (HP) is a printing method for fabricating structures and patterns composed of soft materials bound to solid surfaces and with ~1 micrometer resolution in the x, y, and z dimensions. This platform leverages benign, low intensity light to perform photochemical surface reactions with spatial and temporal control of irradiation, and, as a result, is particularly useful for patterning delicate organic and biological material. In particular, surface- initiated controlled radical polymerizations can be leveraged to create arbitrary polymer and block- copolymer brush patterns. Chapter 1 will review the advances in instrumentation architectures from our group that have made these …


Oxone® Mediated Tempo-Oxidized Cellulose Nanomaterials: Material Characterization, Ultrafiltration Membrane Separations, And Thin Film Composite Gas Transport Analysis, John Phillips Moore May 2021

Oxone® Mediated Tempo-Oxidized Cellulose Nanomaterials: Material Characterization, Ultrafiltration Membrane Separations, And Thin Film Composite Gas Transport Analysis, John Phillips Moore

Graduate Theses and Dissertations

Cellulose nanomaterials (CNMs) are derived from plant matter and are comprised of nanoscopic cellulose crystals and fibers. They have a diverse set of applications, from cosmetics to oil recovery. This study focuses on the properties of Oxone® mediated TEMPO-oxidized cellulose nanomaterials (OTO-CNMs) and their use in controlling the transport properties of polymeric substrates. Synthesis and characterization of cellulosic nanoparticles have resulted in the creation of OTO-CNMs with properties that increase hydrophilicity. With added hydrophilicity, OTO-CNMs possess lower fouling propensity, making them ideal membrane additive for transport limited separations such as hemodialysis.

To utilize the material and unique properties thereof, this …


Peptoid-Based Microsphere Coatings For Biomaterial Applications, Jesse Leland Roberts May 2021

Peptoid-Based Microsphere Coatings For Biomaterial Applications, Jesse Leland Roberts

Graduate Theses and Dissertations

Peptoids are peptidomimetic oligomers that predominantly harness similarities to peptides for biomimetic functionality. The incorporation of chiral, aromatic side chains in the peptoid sequence allows for the formation of distinct secondary structures and self-assembly into supramolecular assemblies, including microspheres. Peptoid microspheres can be coated onto substrates for potential use in biosensor technologies, tissue engineering platforms, and drug-delivery systems. They have the potential for use in biomedical applications due to their resistance to proteolytic degradation and low immunogenicity. This dissertation focuses on the physical characteristics and robustness of the peptoid microsphere coatings in various physiological conditions, along with their ability to …


Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian Jan 2021

Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian

Theses and Dissertations

Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time and resource-intensive and not easily translatable across different laboratories. A machine learning (ML) approach to EBB parameter optimization can accelerate this process for laboratories across the field through training using data collected from published literature. In this work, regression-based and classification-based ML models were investigated for their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite hydrogels. Regression-based models were investigated for their ability to predict suitable extrusion pressure given desired cell viability when keeping …


Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan Jan 2021

Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan

Theses and Dissertations

Naturally sourced, renewable biomaterials possess outstanding advantages for a multitude of biomedical applications owing to their biodegradability, biocompatibility, and excellent mechanical properties. Of interest in this dissertation are silk (protein) and chitin (polysaccharide) biopolymers for the fabrication of functional biodevices. One of the major challenges restricting these materials beyond their traditional usage as passive substrate materials is the ability to combine them with high-resolution fabrication techniques. Initial research work is directed towards the fabrication of micropatterned, flexible 2D substrates of silk fibroin and chitin using bench-top photolithographic techniques. Research is focused on imparting electrochemical properties to silk proteins using conducting …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi Jan 2021

Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi

Dissertations and Theses

Low back pain is the most common cause of disability in the world and is often caused by degeneration or injury of the intervertebral disc (IVD). The IVD is a complex, fibrocartilaginous tissue that allows for the wide range of spinal mobility. Disc degeneration is a progressive condition believed to begin in the central, gelatinous nucleus pulposus (NP) region of the tissue, for which there are few preventative therapies. Current therapeutic strategies include pain management and exercise, or surgical intervention such as spinal fusion, none of which address the underlying cause of degeneration. With an increasingly aging population, the socioeconomic …


Effects Of Hard-To-Soft Segment Ratios On The Synthesis And Physico-Mechanical Properties Of Polyurethane Films, Aaron C. Wilson May 2020

Effects Of Hard-To-Soft Segment Ratios On The Synthesis And Physico-Mechanical Properties Of Polyurethane Films, Aaron C. Wilson

Mechanical Engineering Theses

Blood-contacting cardiovascular stents often induce a secondary clotting event due to unrestricted enzymatic activities. The use of hemocompatible polyurethane coatings on these implantable devices is one of the most promising methods to reduce device rejection. In this study, four commercial polyurethane films of various thicknesses and compositions were evaluated for their anticoagulation properties. Results suggested that these films exhibited excellent thermal and physico-mechanical properties while capable of increasing contact time with blood plasma by over a thousand-fold as compared to a control surface. Due to the unknown structure and composition of these commercial films, polyurethane samples were synthesized from toluene …


Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao Jan 2020

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

The mechanotransduction of cells is the intrinsic ability of cells to convert the mechanical signals provided by the surrounding matrix and other cells into biochemical signals that affect several distinct processes such as tumorigenesis, wound healing, and organ formation. The use of biomaterials as an artificial scaffold for cell attachment, differentiation and proliferation provides a tool to modulate and understand the mechanotransduction pathways, develop better in vitro models and clinical remedies. The effect of topographical cues and stiffness was investigated in fibroblasts using polycaprolactone (PCL)- Polyaniline (PANI) based scaffolds that were fabricated using a self-assembly method and electrospinning. Through this …


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …


Ph-Sensitive Oxygen Release Microspheres To Enhance Cell Survival In Ischemic Condition, Zhongting Liu Dec 2019

Ph-Sensitive Oxygen Release Microspheres To Enhance Cell Survival In Ischemic Condition, Zhongting Liu

McKelvey School of Engineering Theses & Dissertations

Ischemic diseases such as myocardial infarction, stroke and limb ischemia are severe cardiovascular diseases with high rate of death and millions of people suffered from these diseases. Under ischemic environment, cells die due to deficient supply of nutrient and oxygen. To regenerate ischemic tissues, stem cell therapy is a promising approach because stem cells can differentiate into cells necessary for the regeneration. However, stem cell therapy has limitations. For example, few cells can survive under harsh ischemic environment. To enhance stem cells survival, implantation of oxygen release microspheres to sustained supply cells with oxygen represents an effective strategy. Previously, our …


Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier Oct 2019

Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier

Doctoral Dissertations

Bioinspired nanoarchitectures are of great interest for applications in fields such as nanomedicine, tissue engineering, and biosensing. With this interest, understanding how the physical properties of these complex nanostructures relate to their function is increasingly important. This dissertation describes the creation of complex nanoarchitectures with controlled structure and the investigation of the effect of nanocarrier physical properties on cell uptake for applications in nanomedicine. DNA self-assembly by supramolecular polymerization was chosen to create complex nanostructures of controlled architectures. We demonstrated that the supramolecular polymerization of DNA known as hybridization chain reaction (HCR) is in fact a living polymerization. The living …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma Sep 2019

Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma

Electronic Thesis and Dissertation Repository

Biomaterials-based therapies targeting the nucleus pulposus (NP) have the potential to promote regeneration and restore mechanical function to the intervertebral disc. This study developed composite hydrogels incorporating decellularized NP (DNP) and assessed its effects on viability, retention and differentiation of U-CH1 cells, an NP progenitor-like cell line. A minimal protocol was developed to decellularize bovine NP that reduced nuclear content while preserving key extracellular matrix components predicted to be favourable for bioactivity. The resulting DNP demonstrated cell-instructive effects, supporting U-CH1 viability and retention within the hydrogels, and promoted the differentiation of the progenitor-like cells towards an NP-like phenotype. These studies …


A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh Aug 2019

A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh

Graduate Theses and Dissertations

Nanoparticles have received much attentions due to their unique properties that makes them suitable candidates for a broad range of applications. As the size of particles decreases, their surface area-to-volume ratio would increase which is the main cause of much attention. In addition to the size, their morphologies and compositions may also play important roles for defining unique properties. Nanoparticle synthesis include both bottom-up and top-down strategies. To control the process of inorganic nanoparticles synthesis one could follow the bottom-up approach to have atom-level control over their compositions, morphologies, phases, and sizes which is the subject of this work. Due …


Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery Jun 2019

Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery

Materials Engineering

Amyloid nanofibrils are natural materials capable of self-assembling into precise structures with tunable functionalities, while exhibiting excellent mechanical properties. In combination with highly conductive graphene oxide (GO), the 1-D amyloid nanofibrils and 2-D nanosheets of GO can produce a robust and bio-functional nanohybrid, hypothesized to exhibit multi-domain functional properties useful for enzyme sensing, water purification, drug delivery, and tissue scaffolding applications. Here, we examine the properties of an amyloid-graphene oxide nanohybrid film made with amyloids derived from hen egg white lysozymes in an attempt to explore the diverse toolbox of amyloid derivatives and establish ideal fabrication methods and formulations of …