Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Usa Boccia Ball Ramp For Athletes With Quadriplegia, Alissa A. Koukourikos, Matthew Lee, Nathan Bernards Dec 2017

Usa Boccia Ball Ramp For Athletes With Quadriplegia, Alissa A. Koukourikos, Matthew Lee, Nathan Bernards

Mechanical Engineering

In this report, the design process in creating an assistive device for Boccia Classification 3 (BC3) players is outlined. The initial research steps, including research into the rules of the game, capabilities of the players, and existing products is documented to show where ideas for the product stemmed from. This transitions into requirements that the sponsor requested, and preliminary designs and ideas for the product. Finally, this report explains the details of the final design, which has been analyzed for safety, ease of use, and ability to function under different conditions. The processes of manufacturing and testing will also be …


Formulation And Testing Of Biodegradable Polymeric Coating On Zinc Wires In Cardiovascular Stent Application, Avishan Arab Shomali Jan 2017

Formulation And Testing Of Biodegradable Polymeric Coating On Zinc Wires In Cardiovascular Stent Application, Avishan Arab Shomali

Dissertations, Master's Theses and Master's Reports

Biodegradable and biocompatible poly (L-lactic-acid) (PLLA) coating was applied on a modified zinc (Zn) substrate by dip coating, with the intent to delay the bio-corrosion and slow the degradation rate of zinc substrate. 3-(Trimethoxysilyl) propyl methacrylate (MPS) was used for modification of the zinc substrate for promoting the adhesion between the metallic substrate and the polymer coating. It is hypothesized that the delay in Zn biodegradation could be useful in the first several weeks to prevent the early loss of mechanical integrity of the endovascular stent and to improve the healing process of the diseased vascular site. The PLLA coating …


Synthesis And Characterization Of Poly(Simvastatin) - Incorporated Copolymers And Blends For Bone Regeneration, Theodora Asafo-Adjei Jan 2017

Synthesis And Characterization Of Poly(Simvastatin) - Incorporated Copolymers And Blends For Bone Regeneration, Theodora Asafo-Adjei

Theses and Dissertations--Biomedical Engineering

Common biodegradable polyesters such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL) are used as drug delivery vehicles for tissue regenerative applications. However, they are typically bioinert, with drug loading limitations. Polymerizing the active agent or precursor into its respective biodegradable polymer would control drug loading via molar ratios of drug to initiator used for synthesis. Simvastatin was chosen due to its favorable anti-inflammatory, angiogenic, and osteogenic properties. In addition, its lactone ring lends itself to ring-opening polymerization and, consequently, the synthesis of poly(simvastatin) with controlled simvastatin release.

Simvastatin was first polymerized with a 5kDa methyl-terminated poly(ethylene glycol) …


A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao Jan 2017

A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

Electrospinning holds great promise for designing functional 3D biomimetic scaffolds for tissue engineering applications. The technique allows for the reproducible fabrication of 3D scaffolds with control over the porosity and thickness. In this work, a novel method for the synthesis of a 3D electroactive scaffold using electrospinning from polycaprolactone (PCL), Polyvinylidene Fluoride (PVDF) and Polyaniline (PANI) is reported. Additional scaffolds involving different morphologies of PCL, PCL-PVDF and PCL-PANI-PVDF were also fabricated and evaluated. The scaffolds were characterized using electron microscopy to visualize the morphologies. Infrared spectroscopy was used to confirm the presence of polymers and their respective phases in the …


Fabrication Of Flexible, Biofunctional Architectures From Silk Proteins, Ramendra K. Pal Jan 2017

Fabrication Of Flexible, Biofunctional Architectures From Silk Proteins, Ramendra K. Pal

Theses and Dissertations

Advances in the biomedical field require functional materials and processes that can lead to devices that are biocompatible, and biodegradable while maintaining high performance and mechanical conformability. In this context, a current shift in focus is towards natural polymers as not only the structural but also functional components of such devices. This poses material-specific functionalization and fabrication related questions in the design and fabrication of such systems. Silk protein biopolymers from the silkworm show tremendous promise in this regard due to intrinsic properties: mechanical performance, optical transparency, biocompatibility, biodegradability, processability, and the ability to entrap and stabilize biomolecules. The unique …


Design Of Robust Hydrogel Based On Mussel-Inspired Chemistry, Yuan Liu Jan 2017

Design Of Robust Hydrogel Based On Mussel-Inspired Chemistry, Yuan Liu

Dissertations, Master's Theses and Master's Reports

The structure of catechol is found in mussel adhesive proteins and contributed to both wet-resistant adhesion and cohesive curing of these proteins. A synthetic nano-silicate, Laponite was incorporated into catechol-containing hydrogels and the hydrogel network-bound catechol formed strong reversible interfacial interaction with Laponite. The contribution of incorporated catechol-Laponite reversible interfacial interactions to the mechanics of hydrogels constructed by different strategies was studied. In the first strategy, Laponite and catechol were introduced into the double network hydrogel (DN) via the free radical co-polymerization of a catechol-containing monomer, backbone monomer, and crosslinker. The introduction of catechol-Laponite interactions significantly improved the compressive strength …