Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 224

Full-Text Articles in Biomedical Engineering and Bioengineering

Isolation And Production Of Tandem Collagen Binding Domain From Clostridial Collagenase Colg And Developments In C1q Reagent Production For Future Molecule Characterization Work, Stephanie Beitle May 2022

Isolation And Production Of Tandem Collagen Binding Domain From Clostridial Collagenase Colg And Developments In C1q Reagent Production For Future Molecule Characterization Work, Stephanie Beitle

Chemical Engineering Undergraduate Honors Theses

This thesis covers a two part project: the production methods to create a double collagen binding domain molecule with a growth factor for wound healing applications and the development of a new in-house production method for isolating C1q from bovine blood. The wound healing molecule was created using transformation, sonication, and purification before being tested via electrophoresis SDS page and Western blots to confirm the molecule’s presence. The C1q in-house production method utilizes an ultrafiltration flow cell rather than dialysis at a critical point in the process, allowing for researchers to not only be able to use a single small …


Erythrocyte Deformability In Response To Glucose Using Liquid Crystals, Jayden Goff May 2022

Erythrocyte Deformability In Response To Glucose Using Liquid Crystals, Jayden Goff

Biomedical Engineering Undergraduate Honors Theses

The worldwide prevalence of diabetes mellitus is rapidly increasing with about 9.3% of the adult population living with the disease. People with diabetes have trouble regulating their blood glucose levels which typically leads to hyperglycemia. Under normal physiological conditions, erythrocytes can undergo deformations in response to shear stress when passing through capillaries with a smaller diameter. Poorly managed hyperglycemia can lead to the glycosylation of erythrocyte membrane proteins and hemoglobin. This glycosylation leads to increased rigidity of the cells along with decreased deformability in response to mechanical stress; therefore, these cells have a higher susceptibility of getting stuck in the …


Drug-Facilitated Sexual Assault At The University Of Arkansas, Barrett Weidman May 2022

Drug-Facilitated Sexual Assault At The University Of Arkansas, Barrett Weidman

Chemical Engineering Undergraduate Honors Theses

This work was written to fulfill two main purposes. First, to help survivors of Drug-Facilitated Sexual Assault (DFSA) process their experience by compiling the toxicological, pharmacological, and distribution of the three most used date-rape drugs. Second, to gauge the knowledge and interest of University of Arkansas students regarding drug impairments, sexual assault education, and bystander intervention training. A survey was conducted for the latter and revealed that 91.6% of students believe the University’s existing sexual assault prevention education and bystander intervention training have room for improvement. Also, 37.1% of students who have received this education report that the programming does …


Bio-Ionic Liquid Functionalized Hydrogels Towards Smart Tissue Regeneration, Vaishali Krishnadoss Apr 2022

Bio-Ionic Liquid Functionalized Hydrogels Towards Smart Tissue Regeneration, Vaishali Krishnadoss

Theses and Dissertations

A blend of scaffolds, biologically active molecules, and cells are required to assemble functional constructs to repair and regenerate damaged tissue or organ via tissue engineering. The scaffold supports cell growth and proliferation and acts as a medium for diverse cellular activities. Even though hydrogel's high-water content and flexible nature make it a pronounced applicant as a scaffold, they exhibit significant technical limitations such as the absence of cell-binding motifs, lack of oxygen, conductivity, adhesive properties, growth of cells in a 3-dimensional (3D) microenvironment. In this thesis, a novel material platform is evaluated and studied to address the concerns mentioned …


Sol-Gel Derived Bioceramic Poly(Diethyl Fumarate – Co – Triethoxyvinylsilane) Composite, Aref Sleiman Mar 2022

Sol-Gel Derived Bioceramic Poly(Diethyl Fumarate – Co – Triethoxyvinylsilane) Composite, Aref Sleiman

Electronic Thesis and Dissertation Repository

Synthetic bone graft materials have become an increasingly popular choice for bone augmentation. Ceramic-based and polymer-based bone graft materials constitute the two main classes of synthetic bone graft materials. This study investigated the synthesis of novel bioactive composites for their potential use as bone graft biomaterials. Poly(diethyl fumarate-co-triethoxyvinylsilane)/bioceramic class II organic/inorganic hybrid biomaterials were synthesized via a sol gel process. These biomaterials were then reacted with an ammonium phosphate solution to prepare their respective composites. For the first time, we successfully synthesized sol-gel derived bioceramic poly(diethyl fumarate-co-triethoxyvinylsilane) composites. In vitro bioactivity evaluation of poly(diethyl fumarate-co-triethoxyvinylsilane)/bioceramic composites in simulated body fluid …


Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman Jan 2022

Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman

Graduate Theses, Dissertations, and Problem Reports

The specificity and efficiency with which enzymes catalyze selective chemical reactions far exceeds the performance of traditional heterogeneous catalysts that are predominant in industrial applications such as conversion of commodity chemicals to value-added products, fuel cells, and petroleum refinement. Moreover, biocatalysts exhibit exceptionally high product turnover at ambient conditions with little health and environmental burden. These advantageous qualities have led to the prolific use of enzyme catalysis in pharmaceutical, detergents, and food preservation industries wherein their use has greatly reduced waste generation, Unfortunately, the full slate of benefits that enzymes can impart to a broader range of chemical processes is …


Extraction Of Melanin From Black Knot Fungus: Optimization And Applications, Amara Davis Jan 2022

Extraction Of Melanin From Black Knot Fungus: Optimization And Applications, Amara Davis

Williams Honors College, Honors Research Projects

The goal of this research project was to optimize the extraction of melanin from black knot fungus and to analyze possible applications of the extracted melanin. An extraction method that was previously created was examined for possible improvements. Improvements that were studied include the elimination of steps in the extraction process while obtaining the same quality of product, examining options for machinery that could be used to increase production rate when moved to a production plant setting, and optimize the concentrations of the raw materials that are used in the extraction for possible reduction of cost without compromising yield or …


Real-Time Monitoring Of Cell Death Progress Using Capacitance Spectroscopy, Suyang Wu Dec 2021

Real-Time Monitoring Of Cell Death Progress Using Capacitance Spectroscopy, Suyang Wu

Electronic Theses and Dissertations

Biologics, including the monoclonal antibody (mAb), has experienced rapid development in the last decade. However, the price of biologics is often prohibitively high because of the low process efficiency. Delaying the inevitable cell death improves the productivity of upstream bioprocessing, whose success relies on monitoring the cell death onset that indicates the timing for preventive actions.

This study proposes to develop a real-time monitoring model that quantifies the dying cell percentage in lab-scale bioreactors using capacitance spectroscopy. The capacitance spectroscopy contains cell death-related information due to various physical properties changes during the cell death process, e.g., cytoplasmic conductivity change. The …


Development Of Polymeric Cxcr4 Targeting Carriers For Sirna Delivery To Treat Acute Kidney Injury, Weimin Tang Dec 2021

Development Of Polymeric Cxcr4 Targeting Carriers For Sirna Delivery To Treat Acute Kidney Injury, Weimin Tang

Theses & Dissertations

Acute kidney injury (AKI) is a major kidney disease that is characterized by a sudden loss of renal function which manifests by a decrease in urine output and an increase in serum creatinine. AKI is a global healthcare burden associated with high morbidity, mortality, and increasing cost. Currently there are no effective pharmacological treatments available. Apoptosis induced by p53 has been demonstrated as an important pathological mechanism for the development of AKI. Meanwhile, CXCR4/SDF-1 axis has been associated with the inflammation during AKI, and CXCR4 is overexpressed on injured tubules. This dissertation hypothesized that polycations with CXCR4 targeting ability could …


Greenhouse Tomatoes: Process Simulation, Juan Gabriel Marin Jr. Dec 2021

Greenhouse Tomatoes: Process Simulation, Juan Gabriel Marin Jr.

Graduate Theses and Dissertations

Growing population demand and challenges brought on by climate change have spurred the need for more resilient fruit and vegetable supply chains. One agricultural technology of significant interest is the use of greenhouses for food production. Greenhouses create a stable and adaptable environment for crops such as tomatoes to grow year-round. Fresh tomatoes are the second most consumed vegetable per capita in U.S. diets, currently averaging 20.7 pounds. The growing consumption of fresh tomatoes has been the result of increasing cultural diversity in the United States.

To meet the growing demand, Venlo-type greenhouses have been frequently used by growers. It …


Multi-Material Hybrid Additive And Subtractive Manufacturing Of Photonic Devices, Roger Brandon Tipton Oct 2021

Multi-Material Hybrid Additive And Subtractive Manufacturing Of Photonic Devices, Roger Brandon Tipton

USF Tampa Graduate Theses and Dissertations

Optoelectronics focuses on the application of electronic devices that utilize forms of electromagnetic radiation including visible light and other wavelengths including ultraviolet and infrared. Optoelectronics typically include devices that emit light and detect light. Devices created using this technology include light-emitting diodes, laser diodes, photoresistors, photodiodes, solar cells, phototransistors, and fiber optics. Fiber optic interconnects are interesting devices in that they are used in conjunction with optoelectronic devices to transmit information between individual optoelectronic components.

Optoelectronics are typically produced by traditional lithography methods including etching, writing, and printing on rigid silicon substrates for fabricating devices. Other techniques like glass or …


Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles Sep 2021

Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles

Dissertations, Theses, and Capstone Projects

Hypersurface Photolithography (HP) is a printing method for fabricating structures and patterns composed of soft materials bound to solid surfaces and with ~1 micrometer resolution in the x, y, and z dimensions. This platform leverages benign, low intensity light to perform photochemical surface reactions with spatial and temporal control of irradiation, and, as a result, is particularly useful for patterning delicate organic and biological material. In particular, surface- initiated controlled radical polymerizations can be leveraged to create arbitrary polymer and block- copolymer brush patterns. Chapter 1 will review the advances in instrumentation architectures from our group that have made these …


Computational Investigation Of Biological Membranes, Allyson Karmazyn Jul 2021

Computational Investigation Of Biological Membranes, Allyson Karmazyn

Theses - ALL

Lipids are the building blocks of biological membranes, and the types of lipids that compose these cellular envelopes influence the physicochemical properties of the chemicals that can enter or exit the cell across the membrane. This work focuses on the lipid membrane compositions of eukaryotic (red blood cells) and prokaryotic (Pseudomonas aeruginosa) membranes. By analyzing the lipid-lipid and lipid-protein interactions results of the computational simulations, insights into lipid aggregation, bilayer leaflet behavior, membrane asymmetry, and small molecule transport through protein channels were obtained. The differences between prokaryotic and eukaryotic cell membranes are qualitative known; however, this work provides these concepts …


Mutational Analysis Of Latency Associated Peptide For Therapeutic Application, Johnny Will Stephens Jul 2021

Mutational Analysis Of Latency Associated Peptide For Therapeutic Application, Johnny Will Stephens

USF Tampa Graduate Theses and Dissertations

TGF-β is an important protein for regulation of the immune system, and has been linked to promotion of tumor progression and cancer growth. Inhibiting TGF-β has been shown to be an effective therapeutic technique for fighting multiple cancer types. Engineering TGF-β’s natural inhibitor, Latency Associated Peptide (LAP), to improve its biophysical properties has potential to increase therapeutic efficacy.

Rosetta and FoldX can be used in concert to engineer stabilizing mutations of proteins. In accordance with this, PyRosetta and FoldX were used to predict stabilizing mutations of LAP. The most stabilizing mutations from each program were combined with mutually predicted mutations. …


A Portable Point-Of-Care Device Using Joule Heating And Latent Energy Storage For The Temperature Regulation Of Isothermal Nucleic Acid Amplification Tests, Aubrey Lynn Schultz Jul 2021

A Portable Point-Of-Care Device Using Joule Heating And Latent Energy Storage For The Temperature Regulation Of Isothermal Nucleic Acid Amplification Tests, Aubrey Lynn Schultz

Graduate Theses and Dissertations

Accurate and early diagnosis of infectious diseases extremely important. Rapid diagnosis allows for effective treatment and increases the chance for recovery without complications. Additionally, the ability to test the populace frequently, swiftly, and affordably significantly aids in containing wide-scale outbreaks. In terms of specificity and sensitivity, nucleic acid amplification tests (NAAT) are one of the best options for diagnosing infectious diseases. Isothermal NAATS present a unique opportunity to create diagnostic tests deployed at a Point-of-Care (POC) level. Specifically, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) have the potential to deliver reliable POC diagnostics in low-resource settings. When designing …


Predicting Tight Junction Formation Via Claudin Chimeras, Patrick Matthew Marsch May 2021

Predicting Tight Junction Formation Via Claudin Chimeras, Patrick Matthew Marsch

Theses - ALL

Tight junctions are vital to epithelial and endothelial barrier functions aiding in ion transport and preventing toxins from crossing into paracellular space. Claudins, made of four transmembrane helices and two extracellular loops, are a major part of the assembly of tight junctions along with other transmembrane proteins. The dimer interactions of two members of the 27-known members of the claudin family—claudin-2 and claudin-4—were analyzed. We created claudin chimera by switching claudin 2’s extracellular loops with claudin 4’s. The chimeras were analyzed using molecular dynamic simulations by comparing them to the natural claudins. This analysis provided new insight into the assembly …


Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen May 2021

Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen

Chemical Engineering Undergraduate Honors Theses

Detection and identification of viral pathogens is essential in providing effective and rapid medical treatment. Well-established detection methods can be expensive, slow, and sometimes unable to provide the needed sensitivity and specificity. The Zika virus is one clinically relevant pathogen that cannot be easily identified due to cross-reactivity with other viruses from the same family. Electrochemical sensors enhanced with peptoid-functionalized gold nanoparticles (AuNPs) are an alternative to traditional techniques that offers rapid, accurate, label-free pathogen detection for point-of-care diagnostics. To this end, a peptoid capable of binding to the Zika virus envelope protein was developed and its binding affinity for …


Development Of An Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device To Increase Electrolyte Concentrations Of Human Blood Flow To Power Biomedical Devices, Caroline Campbell May 2021

Development Of An Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device To Increase Electrolyte Concentrations Of Human Blood Flow To Power Biomedical Devices, Caroline Campbell

Chemical Engineering Undergraduate Honors Theses

Emerging technologies in nanotechnology and biomedical sciences have led to an increase in biomedical implantable devices including cardiac pacemakers, artificial organs, drug pumps, and sensors. These devices require continuous stable and reliable power to operate, which creates the demand for the need to find a safe, reliable, and stable power source. A promising avenue for a power source for these devices is a miniaturized reverse electrodialysis (RED) biopower cell design that utilizes the salinity differences between bloodstreams that flow inside the human body. Initial results of the RED system demonstrate that higher gradient salinity differences between streams lead to a …


Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness May 2021

Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness

Chemical Engineering Undergraduate Honors Theses

Often in the aftermath of an injury or surgery, the sense of touch and muscle control is lost in the affected area as nerves are damaged or severed and fail to grow back completely. The regeneration of the nerve cells can be promoted by treating the nerves with nerve conduits. Nerve conduits are hollow cylinders of bio-compatible materials that can be surgically implanted to the disconnected nerve to promote and direct the growth of nerves. The objectives of this research are to investigate the ability of nerve conduits treated with layer-by-layer coatings to promote the growth of Schwann cells, to …


Peptoid-Based Microsphere Coatings For Biomaterial Applications, Jesse Leland Roberts May 2021

Peptoid-Based Microsphere Coatings For Biomaterial Applications, Jesse Leland Roberts

Graduate Theses and Dissertations

Peptoids are peptidomimetic oligomers that predominantly harness similarities to peptides for biomimetic functionality. The incorporation of chiral, aromatic side chains in the peptoid sequence allows for the formation of distinct secondary structures and self-assembly into supramolecular assemblies, including microspheres. Peptoid microspheres can be coated onto substrates for potential use in biosensor technologies, tissue engineering platforms, and drug-delivery systems. They have the potential for use in biomedical applications due to their resistance to proteolytic degradation and low immunogenicity. This dissertation focuses on the physical characteristics and robustness of the peptoid microsphere coatings in various physiological conditions, along with their ability to …


Engineered Switch Protein Inspired By Novel Protein Affinity Transition Mode, Liang Fang May 2021

Engineered Switch Protein Inspired By Novel Protein Affinity Transition Mode, Liang Fang

Doctoral Dissertations

Many natural proteins involved in complex biological processes such as ligand binding and protein folding demonstrate multiple, allosterically-regulated conformational states, with protein activity regulated by effector molecules. The alpha L integrin and its inserted domain (I domain) is one example of such a protein. The binding of the effector molecule such as talin or filamin to the cytoplasmic domain of the integrin increases the binding affinity between I- domain and its ligand intercellular adhesion molecule-1, known as ICAM-1.There are multiple models attempting to describe the mechanism responsible for the change in binding affinity. According to research conducted by our lab, …


Design Of An Undergraduate Laboratory Experiment Utilizing A Stirred-Tank, Jacketed Bioreactor, Brennen Middleton May 2021

Design Of An Undergraduate Laboratory Experiment Utilizing A Stirred-Tank, Jacketed Bioreactor, Brennen Middleton

Honors Theses

Bioreactors are utilized in many industries, such as the food, alternative fuel, and pharmaceutical industries, to design and manufacture products. Unlike the similar chemical batch reactors utilized in many chemical processing facilities, bioreactor utilization requires engineers to consider a wider range of operating conditions and parameters. This results in a more complex reaction system and controls network. Due to this, it is imperative for chemical and biomedical engineering students to not only understand the theory surrounding these reactor systems, but also understand how to properly design and perform operating procedures with these systems. Thus, it was determined to create an …


Catechol-Containing Copolymers As An Active Ingredient For Denture Adhesives, Vincent Ying Wun Kong Apr 2021

Catechol-Containing Copolymers As An Active Ingredient For Denture Adhesives, Vincent Ying Wun Kong

Electronic Thesis and Dissertation Repository

Moisture inside the mouth adds challenge to making denture adhesives formulations. Some formulations have zinc to enhance adhesion on wet skin despite knowing the health hazards. Inspired by mussel foot proteins’ catechol unit’s strong underwater adhesion, nine catechol-containing copolymers (P1A-P3C) were synthesized by free radical polymerization of 3,4-dimethoxystyrene (3,4- DMS) with different styrene derivatives followed by deprotection. P1A-P3C were used to make Fn(P)-C-PBS denture adhesive formulations which had suitable shear stresses around ≥ 5 kPa satisfying ISO 10873. In-situ NMR studies of free radical polymerization of 3,4 - DMS and styrene derivatives allowed computation of their reactivity ratios showing all …


Enhancement Of Electrospun Nanofiber Properties Via Automated Track Post-Draw Processing, David Anthony Brennan Mar 2021

Enhancement Of Electrospun Nanofiber Properties Via Automated Track Post-Draw Processing, David Anthony Brennan

Theses and Dissertations

Electrospinning is an alternative manufacturing method, capable of producing fibers with nanoscale diameters from a wide range of different polymers in a process which is relatively simple and inexpensive in comparison to other forms of nanofiber production. This has made electrospinning the subject a great deal of research as a method of producing nanofibers for various high-performance applications. However, electrospun nanofiber tensile strength is weak in comparison to conventional fibers of the same material, preventing widespread use and marketization. This disparity in mechanical strength is attributed to poor polymer chain alignment in individual fibers, caused by the absence of a …


An Investigation Of Cross-Links On Crystallization And Degradation In A Novel, Photocross-Linkable Poly (Lactic Acid) System, Nicholas Baksh Feb 2021

An Investigation Of Cross-Links On Crystallization And Degradation In A Novel, Photocross-Linkable Poly (Lactic Acid) System, Nicholas Baksh

USF Tampa Graduate Theses and Dissertations

Polymeric molecular structure consists of repeating units bonded together. Mechanicalproperties can be altered without affecting chemical makeup by altering the number of these units. Small molecules can be introduced and/or polymers can be modified to form bonds between molecular chains. Cross-linking, as this is called, also introduces mechanical variation with minimal effects on chemical composition. Lastly, polymer chains reorient themselves in response to intermolecular forces. This temperature dependent response is known as crystallization. Although chemistry is unaltered, mechanical properties can depend highly on the percent of the sample that is crystallized.

Cross-linking is known to enhance the mechanical properties of …


Optimization Of Gelatin-Based Cellular Coating Of Msc For Myocardial Infarction Therapy, Kara Amelle Davis Jan 2021

Optimization Of Gelatin-Based Cellular Coating Of Msc For Myocardial Infarction Therapy, Kara Amelle Davis

Theses and Dissertations--Chemical and Materials Engineering

Cardiovascular disease remains the number one threat to American lives. During an acute myocardial infarction (AMI), blood flow is blocked and results in the formation of scar tissue. As the body’s immune system responds, inflammatory signaling causes an increase in both scar tissue size and the patient’s risk for further chronic heart failure. In order to reduce the risk of continued heart disease inflammatory signaling must be reduced. Stem cell therapies have the ability to alter the immune system’s pro-inflammatory signal. However, stem cell retention is limited due to blood flow shear. Gelatin methacrylate (GelMA) based coatings have been shown …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi Jan 2021

Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi

Dissertations and Theses

Low back pain is the most common cause of disability in the world and is often caused by degeneration or injury of the intervertebral disc (IVD). The IVD is a complex, fibrocartilaginous tissue that allows for the wide range of spinal mobility. Disc degeneration is a progressive condition believed to begin in the central, gelatinous nucleus pulposus (NP) region of the tissue, for which there are few preventative therapies. Current therapeutic strategies include pain management and exercise, or surgical intervention such as spinal fusion, none of which address the underlying cause of degeneration. With an increasingly aging population, the socioeconomic …


Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian Jan 2021

Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian

Theses and Dissertations

Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time and resource-intensive and not easily translatable across different laboratories. A machine learning (ML) approach to EBB parameter optimization can accelerate this process for laboratories across the field through training using data collected from published literature. In this work, regression-based and classification-based ML models were investigated for their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite hydrogels. Regression-based models were investigated for their ability to predict suitable extrusion pressure given desired cell viability when keeping …


Complementary Techniques To Study The Behavior Of Water And The Effect On Diffusion And Degradation In Hydrogels, Paige Rockwell Jan 2021

Complementary Techniques To Study The Behavior Of Water And The Effect On Diffusion And Degradation In Hydrogels, Paige Rockwell

Master’s Theses

Hydrogels exhibit biocompatibility in a range of biomedical applications, including drug delivery. This thesis aims to develop complementary techniques to measure the diffusion and degradation behaviors within an injectable, hydrolytically degradable hydrogel, formed via the covalent crosslinking of ethoxylated trimethylolpropane tri-3- mercaptopropionate (ETTMP) and poly(ethylene glycol) diacrylate (PEGDA), to determine its suitability as a drug delivery matrix. The characterization of water as either free, within the network openings of the hydrogel, or bound, tightly associated with the polymer chains, was determined using differential scanning calorimetry (DSC). The mobility of each type of water within the hydrogels was determined via nuclear …