Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …


Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh Aug 2018

Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh

LSU Doctoral Dissertations

Challenges in drug efficacy occur during the treatment of most types of cancer due to the heterogeneity of the tumor microenvironment. This has led to the development of personalized medicine. Due to the clinical success of the proteasome inhibitors Bortezomib and Carfilzomib in treatment of multiple myeloma, interest has shifted towards molecularly-targeted chemotherapeutics for ubiquitin-proteasome system (UPS). Deubiquitinating enzymes (DUBs) are an essential part of this pathway which have been found to promote Bortezomib resistance in multiple myeloma patients. Unfortunately, there is a lack of specific, high throughput biochemical assays to characterize DUB activity in patient samples before and after …


Diamond Mems Biosensors: Development And Applications, Wenli Zhang Jul 2015

Diamond Mems Biosensors: Development And Applications, Wenli Zhang

Doctoral Dissertations

This research focuses on the development a dielectrophoresis-enhanced microfluidic impedance biosensor (DEP-e-MIB) to enable fast response, real-time, label-free, and highly sensitive sensor for bacterial detection in clinical sample. The proposed design consists of application of dielectrophoresis (DEP) across a microfluidic channel to one of the impedance spectroscopy electrodes in order to improve the existent bacterial detection limits with impedance spectroscopy. In order to realize such a design, choice of electrode material with a wide electrochemical potential window for water is very important. Conventional electrode material, such as gold, are typically insulated for the application of DEP, and they fail when …


Detection Of Specific Biological Antigens Using Ac Electrochemical Impedance Spectroscopy, Darrel Angelo Mazzari Jul 2011

Detection Of Specific Biological Antigens Using Ac Electrochemical Impedance Spectroscopy, Darrel Angelo Mazzari

Dissertations (1934 -)

When certain antigens are present in our environment, a rapid, on-site, accurate, selective, and repeatable detection method can be invaluable in preventing illness or saving lives. Rapid detection of these antigens is important to avert spreading infections.

Currently, capturing a sample and sending it to a laboratory can take weeks to get results, which can be much too long. Conventional sensing methodologies include various electrical measurements as capacitive, potentiometric, piezoelectric, surface plasmon resonance (SPR), and quartz crystal microbalance (QCM). Of particular power and interest is Alternating Current (AC) Electrochemical Impedance Spectroscopy (EIS) which provides for the characterization of the electrical …