Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Improving Biomanufacturing Production With Novel Elp-Based Transcriptional Regulators, Juya Jeon, Logan R. Readnour, Kevin V. Solomon Aug 2018

Improving Biomanufacturing Production With Novel Elp-Based Transcriptional Regulators, Juya Jeon, Logan R. Readnour, Kevin V. Solomon

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microbes can be used to produce valuable drugs, chemicals, and biofuels, but their potential has not been fully realized due to low production yields. To improve biomanufacturing processes and yield, we are developing novel, transcriptional regulators using biosynthesis technology in order to improve cellular health and overall production. Our regulator contains elastin-like polypeptides (ELPs), which make ideal sensors since they exhibit a sharp, inverse phase transition to indicators of cell health such as intracellular pH and ionic strength, and external stimuli such as temperature. We hypothesize that ELP can be fused to transcription factors to control expression of target genes. …


Cost-Effective Paper-Based Diagnostic Using Split Proteins To Detect Yeast Infections, Zachary R. Berglund, Kevin V. Solomon, Mohit S. Verma, Moiz Rasheed, Zachary Hartley, Kevin Fitzgerald, Kok Zhi Lee, Janice Chan, Julianne Dejoie, Makayla Schacht, Alex Zavala Aug 2018

Cost-Effective Paper-Based Diagnostic Using Split Proteins To Detect Yeast Infections, Zachary R. Berglund, Kevin V. Solomon, Mohit S. Verma, Moiz Rasheed, Zachary Hartley, Kevin Fitzgerald, Kok Zhi Lee, Janice Chan, Julianne Dejoie, Makayla Schacht, Alex Zavala

The Summer Undergraduate Research Fellowship (SURF) Symposium

The common yeast infection, vulvovaginal candidiasis, affects three out of four women throughout their lifetime and can be spread to their child in the form of oral candidiasis (thrush). This disease is caused by the fungal pathogen Candida albicans, which is also a major cause of systemic candidiasis, a rarer but deadly disease with up to a 49% lethality rate. Current widely-used diagnostic methods include cell cultures, pH tests, and antibody detection, to assist effective treatment. Despite availability of various diagnostic methods, there is no inexpensive, rapid, and accurate way to detect C. albicans infection. This project aims to …


Fret Biosensors: Engineering Fluorescent Proteins As Biological Tools For Studying Parkinson’S Disease, Nathan J. Leroy, Jacob R. Norley, Saranya Radhakrishnan, Mathew Tantama Aug 2017

Fret Biosensors: Engineering Fluorescent Proteins As Biological Tools For Studying Parkinson’S Disease, Nathan J. Leroy, Jacob R. Norley, Saranya Radhakrishnan, Mathew Tantama

The Summer Undergraduate Research Fellowship (SURF) Symposium

Parkinson’s Disease (PD) is a common neurodegenerative disease with over 200,000 new cases each year. In general, the cause of the disease is unknown, but oxidative stress inside of neurons has been associated with the disease’s pathology for some time. Currently, techniques to study the onset of PD inside of neurons are limited. This makes treatments and causes difficult to discover. One solution to this has been fluorescent protein biosensors. In short, these proteins can be engineered to glow when a certain state is achieved inside a cell. The present research discusses the engineering of a genetically-encoded fluorescent protein (FP) …


Bacterial Motility And Its Role In Biofilm Formation, Clayton J. Culp, Arezoo M. Ardekani, Adib Ahmadzadegan Aug 2017

Bacterial Motility And Its Role In Biofilm Formation, Clayton J. Culp, Arezoo M. Ardekani, Adib Ahmadzadegan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bacterial biofilms are known to cause millions of dollars in damage in the medical industry per year via infection of central venous catheters, urinary catheters, and mechanical heart valves. Unfortunately, there are some characteristics of biofilm formation that are yet to be fully understood. Recently much work has been done to investigate the motility characteristics of bacteria with hopes of better understanding the phenomena of biofilm formation. Still, one of the least understood stages is bacterial attachment or adhesion, a process designed to anchor bacteria in an advantageous environment. Providing a better understanding of bacterial motility near solid interfaces will …


Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj Aug 2016

Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hypoxia is a common motif among tumors, contributing to metastasis, angiogenesis, cellular epigenetic abnormality, and resistance to cancer therapy. Hypoxia also plays a pivotal role in oncological studies, where it can be used as a principal target for new anti-cancer therapeutic methods. Oxygen nanobubbles were designed in an effort to target the hypoxic tumor regions, thus interrupting the hypoxia-inducible factor-1α (HIF-1α) regulatory pathway and inhibiting tumor progression. At less than 100nm, oxygen nanobubbles act as a vehicle for site-specific oxygen delivery, while also serving as an ultrasound contrast agent for advanced imaging purposes. Through in vitro and in vivo studies, …


Role Of Sumoylation In Mitochondrial Division In Tetrahymena Thermophila, Ramya Modi, James Forney Aug 2016

Role Of Sumoylation In Mitochondrial Division In Tetrahymena Thermophila, Ramya Modi, James Forney

The Summer Undergraduate Research Fellowship (SURF) Symposium

SUMOylation is a post translation modification that involves the addition of a small protein called SUMO, Small Ubiquitin-like MOdifier to a target protein. It is an important mechanism for the regulation of gene expression, the maintenance of genomic stability and in modifying nuclear proteins. More recently evidence has emerged for its importance in regulating mitochondrial fission and fusion in mammalian cells. This study evaluates the parameters for optimal staining of Tetrahymena thermophila mitochondria using two different dyes and then examines different cell lines with defects in the SUMOylation pathway. The first staining method uses Mitotracker Green, a vital stain that …


Viewing The Extracellular Matrix: An Imaging Method For Tissue Engineering, Michael Drakopoulos, Sarah Calve Aug 2015

Viewing The Extracellular Matrix: An Imaging Method For Tissue Engineering, Michael Drakopoulos, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

The field of regenerative medicine seeks to create replacement tissues and organs, both to repair deficiencies in biological function and to treat structural damage caused by injury. Scaffoldings mimicking extracellular matrix (ECM), the structure to which cells attach to form tissues, have been developed from synthetic polymers and also been prepared by decellularizing adult tissue. However, the structure of ECM undergoes significant remodeling during natural tissue repair, suggesting that ECM-replacement constructs that mirror developing tissues may promote better regeneration than those modeled on adult tissues. This work investigated the effectiveness of a method of viewing the extracellular matrix of developing …


A Novel Synthetic Yeast For Enzymatic Biodigester Pretreatment, Tianyu Tan, Mark S. Aronson, Arren Liu, Jill H. Osterhus, Melissa Robins, Suraj Mohan, Erich Leazer, Bowman Clark, Alexa Petrucciani, Katherine Lowery, James Welch, Casey Martin, Helena Lysandrou, Michael E. Scharf, Jenna Rickus Aug 2015

A Novel Synthetic Yeast For Enzymatic Biodigester Pretreatment, Tianyu Tan, Mark S. Aronson, Arren Liu, Jill H. Osterhus, Melissa Robins, Suraj Mohan, Erich Leazer, Bowman Clark, Alexa Petrucciani, Katherine Lowery, James Welch, Casey Martin, Helena Lysandrou, Michael E. Scharf, Jenna Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lignin, a complex organic polymer, is a major roadblock to the efficiency of biofuel conversion as it both physically blocks carbohydrate substrates and poisons biomass degrading enzymes, even if broken down to monomer units. A pretreatment process is often applied to separate the lignin from biomass prior to biofuel conversion. However, contemporary methods of pretreatment require large amounts of energy, which may be economically uncompelling or unfeasible. Taking inspiration from several genes that have been isolated from termites and fungi which translate to enzymes that degrade lignin, we want to establish a novel “enzymatic pretreatment” system where microbes secrete these …


The Effects Of Exogenous Extracellular Matrix And Substrate Stiffness On Mouse Tendon Cells In Vitro, Caleb J. Mcdaniel, Sarah Calve Oct 2013

The Effects Of Exogenous Extracellular Matrix And Substrate Stiffness On Mouse Tendon Cells In Vitro, Caleb J. Mcdaniel, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

To improve the treatment of musculoskeletal injuries, a better understanding of the transitional environment in which progenitor cells form mature musculoskeletal constructs is necessary. This need arises because injury repair requires restructuring of tissue, similar to the initial tissue construction that occurs during embryonic development by progenitor cells. Differences in both the biochemical and mechanical environments between a transitional and a differentiated state are known to take place, but how these differences affect cell behavior had not yet been characterized in mammalian tendon cells. In order to investigate this, we have determined the effects of exogenous extracellular matrix and the …


Inkjet Printing Of Polarized Yeast Cells, Xiuyuan Yang, Kari Clase Oct 2013

Inkjet Printing Of Polarized Yeast Cells, Xiuyuan Yang, Kari Clase

The Summer Undergraduate Research Fellowship (SURF) Symposium

The motivation is to applying engineering knowledge to develop 3D bio-printing in inkjet printer (first stage--monolayer). To achieve the goal, there are three problems to solve. First, we have to figure out regulation of growth of target cells; inability to regulate the location and pattern of growing cells make us even unable to build 3D printer in the direct way. Second problem is how to protect of yeast cells from high temperature and viscous force when printing. The third issue is how to modify the inkjet printer especially the feeding system in order to implement printing on other materials rather …