Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Rapid Antibiotic Susceptibility Testing Platform For Direct Clinical Samples, Terrance Zhang May 2020

Rapid Antibiotic Susceptibility Testing Platform For Direct Clinical Samples, Terrance Zhang

Honors Scholar Theses

Infectious diseases and septicemia are two of the major causes of death in the U.S., necessitating rapid treatment of septic patients with proper, efficacious antibiotics. Unfortunately, the emergence and spread of multidrug-resistant bacteria are continuously being aggravated by an abuse in antibiotic prescription at a clinical and agricultural level. It is known that antibiotic resistance evolves through the sequential accumulation of multiple mutations in bacteria, which is accentuated by prolonged exposure of bacteria to ineffective antibiotics when implementing traditional septicemia treatment. The goal of this project is to develop a novel, easy-to-use AST platform for rapid antimicrobial susceptibility profiling to …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Engineering A Fluorescent Protease Sensor For In Vivo Protein Detection, Thomas C. Kinard Jan 2017

Engineering A Fluorescent Protease Sensor For In Vivo Protein Detection, Thomas C. Kinard

Honors Scholar Theses

This report details the results of an ongoing project to engineer a mutant form of Red Fluorescent Protein (RFP) variant mCherry that acts as a real-time in vivo protease sensor. The sought-after mutant only becomes fluorescent when exposed to Tobacco Etch Virus (TEV) Protease, this system’s model protease. This will be accomplished via the insertion of the TEV Protease Recognition Site (TEV-PRS) in such a position that, before cleavage, will prevent the protein from folding to fluorescent conformation, but upon cleavage, will allow for fluorescent conformation to occur. The cylindrical structure of the protein, composed of beta-pleated sheets, contains “loops” …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

University Scholar Projects

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

Honors Scholar Theses

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …


Effect Of Prostaglandin E2 On Mechanical Stresses Applied By Mc3t3-E1 Osteoblast-Like Cells On A Soft Hydrogel Substrate, Abhijit Deb Roy Aug 2011

Effect Of Prostaglandin E2 On Mechanical Stresses Applied By Mc3t3-E1 Osteoblast-Like Cells On A Soft Hydrogel Substrate, Abhijit Deb Roy

Master's Theses

Osteoblasts are sensitive to mechanical stimuli and release Prostaglandin E2 (PGE2) when exposed to a fluid shear stress. The exact mechanism by which these cells sense mechanical stress is not well established. A study of the stresses applied by the osteoblasts, under the influence of PGE2, on a hydrogel provided information regarding intercellular-communication via changes in the substrate surface pattern.

A digital image correlation program was developed using the Levenberg-Marquardt optimization algorithm to analyze images and compare the deformations between pairs of images. Comparisons of images before and after the addition of PE2 to the media showed differences in the …