Open Access. Powered by Scholars. Published by Universities.®

Structures and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Space Vehicles

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 31 - 54 of 54

Full-Text Articles in Structures and Materials

The Use Of Additive Manufacturing For Cubesat Design And Testing, Jeremy Straub, Ronald Marsh, Scott Kerlin Apr 2015

The Use Of Additive Manufacturing For Cubesat Design And Testing, Jeremy Straub, Ronald Marsh, Scott Kerlin

Jeremy Straub

In developing a small spacecraft, the integration of numerous systems in a small area is a key challenge. It is easy to overlook how various component parts will integrate or have multiple sub-groups utilize un-filled space without realizing that they are creating a resource conflict. Additionally, the manufacturability of the final design is a key consideration. For all of these reasons, developing low-cost and incremental prototypes is a engineering ‘best practice’ for small spacecraft development.


Suborbital Spaceflight: A Student Team’S Plan To Send A Rocket To Space, Bryce Chanes, William Carpenter, Julio Benavides, Matthew Haslam, Brenda Haven Jan 2015

Suborbital Spaceflight: A Student Team’S Plan To Send A Rocket To Space, Bryce Chanes, William Carpenter, Julio Benavides, Matthew Haslam, Brenda Haven

Aviation / Aeronautics / Aerospace International Research Conference

The Eagle Space Flight Team was created with the goal of becoming the first undergraduate team to design, build, and launch a rocket capable of suborbital spaceflight. In order to achieve this goal, the team will have to design a rocket capable of atmospheric flight at speeds over Mach 5 and launch it on one of the largest amateur rocket motors ever made. Over the next three years, the team will progress towards accomplishing this feat through a series of incremental test flights. Before the space flight, the team will build three sub-scale rockets designed to reach altitudes of 30,000’, …


Improving And Expanding The Capabilities Of The Poly-Picosatellite Orbital Deployer, David Pignatelli Oct 2014

Improving And Expanding The Capabilities Of The Poly-Picosatellite Orbital Deployer, David Pignatelli

Master's Theses

The Poly-Picosatellite Orbital Deployer (P-POD) has undergone a series of revisions over the years. The latest revision, described in this Master’s Thesis, incorporates new capabilities like EMI shielding, an inert gas purge system, and an electrical interface to the CubeSats after they are integrated into the P-POD. Additionally, some mass reduction modifications are made to the P-POD, while its overall strength is increased. The P-POD inert gas purge system successfully flew, on a previous revision P-POD. The P-POD components are analyzed to a set of dynamic loads for qualification, and successfully undergoes random vibration qualification testing. The P-POD encounters some …


A Design Pathfinder With Material Correlation Points For Inflatable Systems, Jared T. Fulcher Jan 2014

A Design Pathfinder With Material Correlation Points For Inflatable Systems, Jared T. Fulcher

Theses and Dissertations--Mechanical Engineering

The incorporation of inflatable structures into aerospace systems can produce significant advantages in stowed volume to mechanical effectiveness and overall weight. Many applications of these ultra-lightweight systems are designed to precisely control internal or external surfaces, or both, to achieve desired performance. The modeling of these structures becomes complex due to the material nonlinearities inherent to the majority of construction materials used in inflatable structures. Furthermore, accurately modeling the response and behavior of the interfacing boundaries that are common to many inflatable systems will lead to better understanding of the entire class of structures. The research presented involved using nonlinear …


Multidimensional Modeling Of Pyrolysis Gas Transport Inside Orthotropic Charring Ablators, Haoyue Weng Jan 2014

Multidimensional Modeling Of Pyrolysis Gas Transport Inside Orthotropic Charring Ablators, Haoyue Weng

Theses and Dissertations--Mechanical Engineering

During hypersonic atmospheric entry, spacecraft are exposed to enormous aerodynamic heat. To prevent the payload from overheating, charring ablative materials are favored to be applied as the heat shield at the exposing surface of the vehicle. Accurate modeling not only prevents mission failures, but also helps reduce cost. Existing models were mostly limited to one-dimensional and discrepancies were shown against measured experiments and flight-data. To help improve the models and analyze the charring ablation problems, a multidimensional material response module is developed, based on a finite volume method framework. The developed computer program is verified through a series of test-cases, …


Open Beyond Orbit: Using The Designs From The Open Prototype For Educational Nanosats Outside Of Earth Orbit, Jeremy Straub Jun 2013

Open Beyond Orbit: Using The Designs From The Open Prototype For Educational Nanosats Outside Of Earth Orbit, Jeremy Straub

Jeremy Straub

This paper presents an overview of the Open Prototype for Educational NanoSats (OPEN) and its prospective use in interplanetary missions. OPEN is framework to facilitate the low-cost creation of CubeSat-class spacecraft via using publically available (provided by the OPEN project) de- signs, software, fabrication instructions and test plans. The base open configuration is designed to be able to be produced with a parts budget of under $5,000. Despite this low cost, it is a very ro- bust spacecraft (with capabilities meeting or exceeding many of the vendor-kit solutions which cost eight-or-more times this amount).

Two approaches for using the OPEN …


Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr. Jun 2013

Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr.

Master's Theses

This paper describes the changes made from Cal Poly’s initial railgun system, the Mk. 1 railgun, to the Mk. 1.1 system, as well as the design, fabrication, and testing of a newer and larger Mk. 2 railgun system. The Mk. 1.1 system is developed as a more efficient alteration of the original Mk. 1 system, but is found to be defective due to hardware deficiencies and failure, as well as unforeseen efficiency losses. A Mk. 2 system is developed and built around donated hardware from the Naval Postgraduate School. The Mk. 2 system strove to implement an efficient, augmented, electromagnetic …


Work To-Date On Mechanical Design For An Open Hardware Spacecraft, Jacob Brewer, Brian Badders, Josh Berk, Jeremy Straub Apr 2013

Work To-Date On Mechanical Design For An Open Hardware Spacecraft, Jacob Brewer, Brian Badders, Josh Berk, Jeremy Straub

Jeremy Straub

The OpenOrbiter CubeSat seeks to demonstrate the designs created for the Open Prototype for Educational NanoSats (OPEN) initiative. OPEN provides a set of freely available design documents that can be utilized by educational and research teams worldwide. The OPEN structure implements a different strategy than most other CubeSats, allowing it to maximize the use of the overhang space (an area of space between the supports for the frame rails and the wall in the PPOD deployer). It also provides a location for payload components or a propellant tank at the spacecraft’s center of mass. This design is enabled by a …


Stemsat: An Iss Cubesat Program Based On Spare Parts, Anders Nervold, Josh Berk, Jeremy Straub Apr 2013

Stemsat: An Iss Cubesat Program Based On Spare Parts, Anders Nervold, Josh Berk, Jeremy Straub

Jeremy Straub

With the national government’s focus on driving STEM-education, it is important to provide hands-on ave-nues where students can engage with, and accumulate ex-perience working directly with projects within their fields of interest. The Student Technology Emersion Satellite (STEMSat), provides an avenue for students to become in-volved in CubeSat design and development with only mi-nor hardware and monetary resources, and without being dependent on a launch.

STEMSats are CubeSat satellites that are created from spare parts, residual tools and equipment, obsolete mate-rials, and other types of trash aboard the ISS. A list of all the excess items available for such a …


The Open Prototype For Educational Nanosats: Fixing The Other Side Of The Small Satellite Cost Equation, Josh Berk, Jeremy Straub, David Whalen Mar 2013

The Open Prototype For Educational Nanosats: Fixing The Other Side Of The Small Satellite Cost Equation, Josh Berk, Jeremy Straub, David Whalen

Jeremy Straub

Government supported nano-satellite launch programs and emerging commercial small satellite launch services are reducing the cost of access to space for educational and other CubeSat projects. The cost and complexity of designing and building these satellites remains a vexing complication for many would be CubeSat aspirants. The Open Prototype for Educational NanoSats (OPEN), a proposed nano-satellite development platform, is described in this paper. OPEN endeavors to reduce the costs and risks associated with educational, government and commercial nano-satellite development. OPEN provides free and publicly available plans for building, testing and operating a versatile, low-cost satellite, based on the standardized CubeSat …


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …


Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski Jun 2012

Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski

Aerospace Engineering

The purpose of the senior project is to construct a thermal vacuum by utilizing a preexisting vacuum chamber in the Space Environments Lab, and a donated Advanced Thermal Sciences (ATS) chiller. While a thermal vacuum is already available on campus, building one for the Space Environments Lab would grant undergraduates access to the equipment, allowing a much better understanding of testing methods and procedures in use by the aerospace industry. This paper explains the design and analysis of the thermal vacuum (T-VAC) project as well as the operation and procedures required for the ATS chiller and fill/drain tank. The thermal …


Design, Manufacturing And Testing Of An Environmentally-Green Bipropellant Thruster, Alex Bendoyro, Gabriel Sanchez, Erin Stearns, Phillip Takahashi Jun 2011

Design, Manufacturing And Testing Of An Environmentally-Green Bipropellant Thruster, Alex Bendoyro, Gabriel Sanchez, Erin Stearns, Phillip Takahashi

Aerospace Engineering

This project reviews the design, manufacturing and experimentation process of a green bi-propellant thruster designed to output 5 lbf. The goals were to successfully design, manufacture and test a thruster, while discovering the complications that arise through out the complete design process of a green thruster. The thruster was successfully designed using ideal rocket equations and the design was successfully confirmed using CFD and FEA. Manufacturing of the thruster was fully planned and revealed mild flaws in thruster design. For example some features were not manufacturable to the exact measurements desired. Testing of the engine gave results inconsistent with expected …


Design, Fabrication, And Testing Of An Electromagnetic Rail Gun For The Repeated Testing And Simulation Of Orbital Debris Impacts, Jeff Maniglia, Jordan Smiroldo, Alex Westfall, Guy Zohar Jun 2011

Design, Fabrication, And Testing Of An Electromagnetic Rail Gun For The Repeated Testing And Simulation Of Orbital Debris Impacts, Jeff Maniglia, Jordan Smiroldo, Alex Westfall, Guy Zohar

Aerospace Engineering

An Electromagnetic Railgun (EMRG) was designed, built, and tested, capable of firing a projectile a 1 gram projectile at 650 m/s muzzle velocity. The EMRG utilizes an injector, a high voltage power supply, a capacitor bank, inductors and rails. The injector fires 2300 psig Nitrogen gas into the system to provide an initial velocity. The high voltage power supply charges the capacitor bank. The capacitor bank discharges the electric potential built up through the projectile while inside the rails in order to create the EMRG’s force. The inductors are used to pulse form the capacitor bank in order to get …


Modeling And Preliminary Finite Element Analysis On The Spun Structure For The Cpintersep Project, Jason Carpenter, Kelly Cheng, Jeffrey Ma, Richard Pelham, Kevin Povey Dec 2010

Modeling And Preliminary Finite Element Analysis On The Spun Structure For The Cpintersep Project, Jason Carpenter, Kelly Cheng, Jeffrey Ma, Richard Pelham, Kevin Povey

Aerospace Engineering

This paper details the process of modeling and importing the model into FEA for the spun structure of the BS376 spacecraft. Engineering drawings were converted into 3D models using Pro/Engineer and then imported and into Patran for pre-processing of a Finite Element Model. To verify the Finite Element Model, several test cases were set up and solved using Nastran solver. Our simple load cases were found to be in congruence with analytical solution methods validating the finite element model.


Descent Systems For An Improved And Reusable Gemini Capsule, Heather Pitts Oct 2010

Descent Systems For An Improved And Reusable Gemini Capsule, Heather Pitts

Von Braun Symposium Student Posters

No abstract provided.


Recent Developments In Smart Adaptive Structures For Solar Sailcraft, Mark Whorton, Young Kim, Jerry Oakley, Olawale Adetona, Lee Keel Apr 2007

Recent Developments In Smart Adaptive Structures For Solar Sailcraft, Mark Whorton, Young Kim, Jerry Oakley, Olawale Adetona, Lee Keel

Information Systems and Engineering Management Research Publications

The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer …


Propulsion Enhancement Contributions To The Performance Of Space Launch Vehicles, Russell H. Edwards Jan 2007

Propulsion Enhancement Contributions To The Performance Of Space Launch Vehicles, Russell H. Edwards

Mechanical & Aerospace Engineering Theses & Dissertations

A research effort has been undertaken to investigate critical aspects of launch vehicle performance as affected by variations in specific launch vehicle parameters. The major portion of the study involves liquid propellant systems. However, since solid propellant systems also play a role in today's launch systems, a representative solid-propellant launch vehicle has also been analyzed. The research undertaken determined that the payload capability of a space launch vehicle, or, conversely, the vehicle total liftoff mass, is highly sensitive to the manner in which the space launch vehicle is staged. The research has led to the development and programming of a …


Structural Analysis Of The Rigidizable Inflatable Get-Away-Special Experiment, Anna E. Gunn-Golkin Sep 2006

Structural Analysis Of The Rigidizable Inflatable Get-Away-Special Experiment, Anna E. Gunn-Golkin

Theses and Dissertations

The purpose of this research was to validate the structural integrity of the Rigidizable Inflatable Get-Away-Special Experiment (RIGEX) and make appropriate improvements to the design, motivated by static and dynamic analysis results. RIGEX is designed to advance the use of rigidizable inflatable structures in the space environment by providing three sets of on-orbit test data on the structural characteristics of three thermoplastic composite tubes. This thesis discusses the RIGEX structural analysis. The term structural analysis refers to the development of a detailed finite element model and the tests for which the model was used. The finite element model provided an …


Detailed Design Of The Rigidizable Inflatable Get-Away-Special Experiment, Jeremy S. Goodwin Mar 2006

Detailed Design Of The Rigidizable Inflatable Get-Away-Special Experiment, Jeremy S. Goodwin

Theses and Dissertations

The Rigidizable Inflatable Get-Away-Special Experiment is a Space Shuttle experiment that will study the effects of the zero-gravity space environment on the deployment and modal analysis of three inflatable and rigidizable tubes using a sub-Tg rigidization technique. In 2004, RIGEX was transitioned from the Space Shuttle's Get-Away-Special (GAS) canister to its Canister for All Payload Ejections (CAPE), requiring several modifications to the design. The results of these modifications, along with further refinements made to previous efforts, combine to form the detailed design of the experiment. In addition to the design modifications, analyses were conducted to determine the containment capabilities of …


Development And Testing Of An Inflatable, Rigidizable Space Structure Experiment, Sarah K. Helms Mar 2006

Development And Testing Of An Inflatable, Rigidizable Space Structure Experiment, Sarah K. Helms

Theses and Dissertations

Many recent space technology concepts require large space structures such as solar arrays and large aperture antennas; however, tight constraints on payload mass and volume often preclude their launch. Employing inflatable, rigidizable structures can reduce mass and volume while providing sufficient packing flexibility and structural stiffness. AFIT has developed RIGEX to flight-test this type of structure. RIGEX will test the deployment and structural characteristics of three thermoplastic composite Sub-Tg tubes. Once launched on the Space Shuttle in 2007, the spaceflight results will be compared to lab data to validate on-orbit reliability and ground test methods. This paper documents three main …


Maneuvering Control Of A Spacecraft With Propellant Sloshing, Philip A. Savella Jul 2005

Maneuvering Control Of A Spacecraft With Propellant Sloshing, Philip A. Savella

Master's Theses - Daytona Beach

Propellant slosh has been a problem studied in spacecraft designs since the early days of large, liquid-fuel rockets. The conventional design solution involves physical structures inside the fuel tanks that limit propellant motion. Although effective, baffles and bladders add to spacecraft mass and structural complexity. In this research, the sloshing fuel mass is treated as an unactuated degree of freedom within a rigid body. Specifically, the propellant is modeled as a pendulum mass anchored at the center of a spherical tank. After obtaining the coupled equations of motion, several linear controllers are developed to achieve planar spacecraft pitch-maneuvers while suppressing …


High Heat Flux Cooling For Spacecraft Electronics, Louis C. Chow, John E. Leland Jan 1991

High Heat Flux Cooling For Spacecraft Electronics, Louis C. Chow, John E. Leland

Office for Research Publications and Presentations

An experimental investigation of flow boiling in a curved channel has been performed to ascertain its value in electronics cooling applications. Results have been obtained for flow velocities of 1 to 5 m/s and subcooling of 0.5 to 40 K. These results were compared to those of straight channel under identical velocity and subcooling conditions. The critical heat flux of the curved channel was found to be greater than that of the straight channel. In some cases the increase was found to be marginal, however. An unexplained temperature shift in the nucleate boiling regime was experienced during some experiments. Because …


On The Space Shuttle Wing Thermal-Structural Analysis, Kumar Krishna Tamma Apr 1983

On The Space Shuttle Wing Thermal-Structural Analysis, Kumar Krishna Tamma

Mechanical & Aerospace Engineering Theses & Dissertations

A finite element approach for efficient thermal-structural analysis of structures with thermal protection systems (TPS) is described. The approach is applied to Space Shuttle wing structure configurations subjected to reentry heating. New two and three-dimensional finite elements are developed to model heat transfer in the TPS and supporting structure. A typical TPS/Structural element predicts transient nonlinear temperature variations through the TPS thickness and detailed structural temperatures at the TPS/Structure interface. The accuracy of the TPS/Structure approach in two and three-dimensions is evaluated by comparisons with the conventional approach for various configurations of the wing structure. The results indicate that the …