Open Access. Powered by Scholars. Published by Universities.®

Structures and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Structures and Materials

Development Of High-Density Propulsion System Technologies For Interplanetary Small Satellites And Cubesats, Morgan Andrew Roddy Jul 2020

Development Of High-Density Propulsion System Technologies For Interplanetary Small Satellites And Cubesats, Morgan Andrew Roddy

Graduate Theses and Dissertations

The goal of this research was to support the development of a novel propulsion system for small satellites (<180 kg) and CubeSats. This was pursued by conducting a collection of studies that were designed to provide engineering data that would be critical in designing a functional prototype. The novel propulsion system was conceived by the author to provide best-in-class performance for the small satellite and CubeSat families of spacecraft. This context presents specific design requirements that the presented technology attempts to satisfy. The most critical among these is high density; the propellant was designed to be stored with high density and the thruster was designed to be as compact as possible. The propulsion system is composed of two primary elements, a propellant generator and a thruster. The propellant generator works by sublimating a solid crystal into vapor and then using this vapor to etch a dense metal. The resulting gaseous byproducts of this reaction are the propellant. This dissertation used xenon difluoride (XeF2) vapor to etch tungsten (W) which react to form xenon gas (Xe) and tungsten hexafluoride (WF6). This approach gave a theoretical propellant storage density 5.40 g/cm3; and 5.17 g/cm3 was demonstrated. The sublimation dynamics of the XeF2 were studied as a function of surface area and temperature and it was found to be suitable for the intended application due to its high effluence rate; that is, it sublimates fast enough to be useful. The sublimation rates are on the order of 10’s of µg/s. The etch rate of XeF2 on W was also studied and found to be suitably fast to provide useful amounts of reactants for use as a propellant, again on the order of 1’s of µg/s. The thruster is an electrostatic radio frequency (RF) ion thruster design and is manufactured with Low Temperature Co-Fired Ceramic (LTCC) materials system and manufacturing technology. Manufacturing samples of the thruster were built at the University of Arkansas in July 2015 and tested at NASA’s Marshall Space Flight Center in May 2018. Testing validated the viability of the LTCC thruster and provided valuable information on how to improve the thruster’s design.


Design, Validation, And Verification Of The Cal Poly Educational Cubesat Kit Structure, Nicholas B. Snyder Jun 2020

Design, Validation, And Verification Of The Cal Poly Educational Cubesat Kit Structure, Nicholas B. Snyder

Master's Theses

In this thesis, the development of a structure for use in an educational CubeSat kit is explored. The potential uses of this kit include augmenting existing curricula with aspects of hands on learning, developing new ways of training students on proper space systems engineering practices, and overall contributing to academic capacity building at Cal Poly and its collaborators. The design improves on existing CubeSat kit structures by increasing accessibility to internal components by implementing a modular backplane system, as well as adding the ability to be environmentally tested. Manufacturing of the structure is completed with both additive (Fused Deposition Modeling …


Miniaturized Ultraviolet Imager Phase Iii, Bradley D. Albright, Nicolas A. Armenta, Colin W. Harrop Jun 2020

Miniaturized Ultraviolet Imager Phase Iii, Bradley D. Albright, Nicolas A. Armenta, Colin W. Harrop

Mechanical Engineering

This document details the work to date, June 9, 2020, done by the Cal Poly Mechanical Engineering senior project team, Miniaturized Ultraviolet Imager: Phase III (MUVI III), sponsored by the University of California, Berkeley – Space Sciences Laboratory (UCB SSL). MUVI III is the third senior project team of an ongoing design, MUVI: the prototype of a 2U sized CubeSat intended to capture aurora images in the ionosphere. The first team, MUVI I, finished development of the UV imager. The second team, MUVI II, designed the mirror mounting and deployable door mechanisms. The goal of MUVI phase III is to …


Experimental Evaluation Of Strength Degradation Temperature For Carbon Epoxy Filament Wound Composite, Jai Krishna Mishra, Surya Prakash Rao Ch Dr, Subhash Chandra Bose P Dr, Kishore Nath N Dr, Rama Rao Golla Mr Jan 2020

Experimental Evaluation Of Strength Degradation Temperature For Carbon Epoxy Filament Wound Composite, Jai Krishna Mishra, Surya Prakash Rao Ch Dr, Subhash Chandra Bose P Dr, Kishore Nath N Dr, Rama Rao Golla Mr

International Journal of Aviation, Aeronautics, and Aerospace

Polymeric composites have been widely used in various structural and thermal aerospace applications. Polymeric composites having high strength and high modulus reinforcement are ideally suited for lot of critical aerospace applications as structure is designed with high specific strength and high specific modulus. In case of launch vehicles/ missile one such application is design and manufacturing of solid rocket motor casing with polymeric composites as it give high performance and reduces inert weight of propulsion system. The high specific strength and high specific modulus of composite materials makes it ideal choice for designing the composite rocket motor case (CRMC). These …


Evaluating The Effectiveness Of Aerospace Materials, Vehicle Shape And Astronaut Position At Lowering The Whole Body Effective Dose Equivalent In Deep Space, Daniel K. Bond Jan 2020

Evaluating The Effectiveness Of Aerospace Materials, Vehicle Shape And Astronaut Position At Lowering The Whole Body Effective Dose Equivalent In Deep Space, Daniel K. Bond

Theses and Dissertations

As future crewed, deep space missions are being planned, it is important to assess how spacecraft design can be used to minimize radiation exposure. Collectively with shielding material, vehicle shape and astronaut position must be used to protect astronauts from the two primary sources of space radiation: Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE). GCRs, which are composed of low intensity, highly energetic, and fully ionized stable and meta-stable isotopes, are considered a chronic source of radiation risk to the astronauts. SPEs, which originate from solar coronal mass ejections, are composed mostly of high intensity protons that can …