Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical properties

Materials Science and Engineering

Institution
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 97

Full-Text Articles in Engineering

The Effect Of Compaction Temperature And Pressure On Mechanical Properties Of 3d Printed Short Glass Fiber Composites, Pushpashree Jain Ajith Kumar Jain Dec 2020

The Effect Of Compaction Temperature And Pressure On Mechanical Properties Of 3d Printed Short Glass Fiber Composites, Pushpashree Jain Ajith Kumar Jain

Mechanical & Aerospace Engineering Theses & Dissertations

Among many thermoplastics that are used in engineering, polyamide 6 (nylon 6) is an extremely versatile engineering thermoplastic. Nylon filled with glass fibers has higher mechanical strength and high wear resistance than general purpose nylon. 3D printed composites, based on fused filament modeling, typically suffer from poor bead-to-bead bonding and relatively high void content, limiting their mechanical properties

This thesis explores the effect of compaction pressure and temperature on improving the mechanical properties of 3D printed composites. Engineering moduli in the printing and transverse to printing direction, as well as ultimate strength were measured using the tensile testing with Digital …


Aerosol Jet Printed Capacitive Strain Gauge For Soft Structural Materials, Kiyo T. Fujimoto, Jennifer K. Watkins, Timothy Phero, Takoda Bingham, Kshama Lakshmi Ranganatha, Benjamin C. Johnson, Zhangxian Deng, Brian Jaques, David Estrada Nov 2020

Aerosol Jet Printed Capacitive Strain Gauge For Soft Structural Materials, Kiyo T. Fujimoto, Jennifer K. Watkins, Timothy Phero, Takoda Bingham, Kshama Lakshmi Ranganatha, Benjamin C. Johnson, Zhangxian Deng, Brian Jaques, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Soft structural textiles, or softgoods, are used within the space industry for inflatable habitats, parachutes and decelerator systems. Evaluating the safety and structural integrity of these systems occurs through structural health monitoring systems (SHM), which integrate non-invasive/non-destructive testing methods to detect, diagnose, and locate damage. Strain/load monitoring of these systems is limited while utilizing traditional strain gauges as these gauges are typically stiff, operate at low temperatures, and fail when subjected to high strain that is a result of high loading classifying them as unsuitable for SHM of soft structural textiles. For this work, a capacitance based strain gauge (CSG) …


Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal Jun 2020

Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal

FIU Electronic Theses and Dissertations

Lightweight metals, such as Aluminum, Magnesium and Titanium, are receiving widespread attention for manufacturing agile structures. However, the mechanical strength of these metals and their alloys fall short of structural steels, curtailing their applicability in engineering applications where superior load-bearing ability is required. There is a need to effectively augment the deformation- and failure-resistance of these metals without compromising their density advantage.

This dissertation explores the mechanical reinforcement of the aforementioned lightweight metal matrices by utilizing Boron Nitride Nanotube (BNNT), a 1D nanomaterial with extraordinary mechanical properties. The nanotubes are found to resist thermo-oxidative transformations up to ~750°C, establishing their …


Materials-Processing Relationships For Metal Fused Filament Fabrication Of Ti-6al-4v Alloy., Paramjot Singh May 2020

Materials-Processing Relationships For Metal Fused Filament Fabrication Of Ti-6al-4v Alloy., Paramjot Singh

Electronic Theses and Dissertations

Additive manufacturing (AM) is at the mainstream to cater the needs for rapid tooling and small-scale part production. The metal AM of complex geometries is widely accepted and promoted in the industry. While several metal AM technologies exist and are matured to a level where expectation in terms of design and properties are possible to realize. But the metal AM suffers from the heavy expense to acquire equipment, isotropic property challenges, and potential hazards to work with loose reactive metal powder. With this motivation, the dissertation aims to develop the fundamental aspects to print metal parts with bound Ti-6Al-4V powder …


Effect Of Cobalt In Thin Wall Ductile Iron And Solid Solution Strengthened Ferritic Ductile Iron, Alejandra I. Almanza Jan 2020

Effect Of Cobalt In Thin Wall Ductile Iron And Solid Solution Strengthened Ferritic Ductile Iron, Alejandra I. Almanza

Dissertations, Master's Theses and Master's Reports

Ductile Iron is a material that is constantly evolving. Consequently, the ferrous industry is not only focusing on lightweighting but also on improving the impact strength and fracture toughness of typical ferritic-pearlitic ductile iron grades and solid solution strengthened ferritic ductile irons. Recently, the demand for thin-wall ductile iron and solid solution strengthened ferritic ductile iron grades has increased. The challenges behind the fabrication of these two ductile iron materials are the presence of carbides and the embrittlement of ferrite. In response, research has been focused on looking at alternative methods that can mitigate carbide formation in thin sections and …


Microstructure And Mechanical Behavior Of Metastable Beta Type Titanium Alloys, Chirag Dhirajlal Rabadia Jan 2020

Microstructure And Mechanical Behavior Of Metastable Beta Type Titanium Alloys, Chirag Dhirajlal Rabadia

Theses: Doctorates and Masters

Current biomaterials such as stainless steel, Co-Cr alloys, commercially pure titanium and Ti-6Al- 4V either possess poor mechanical compatibility and/or produce toxic effects in the human body after several years of usage. Consequently, there is an enormous demand for long-lasting biomaterials which provide a better combination of mechanical, corrosion and biological properties. In addition to this, alloys used in high-strength applications possess either high-strength or large plasticity. However, a high-strength alloy should possess a better blend of both strength and plasticity when used in high-strength applications. Metastable β-titanium alloys are the best suited alloys for biomedical and high-strength applications because …


Influence Of Mechanical Properties Of Paper Coating On The Crack At The Fold Problem, Seyyed Mohammad Hashemi Najafi May 2019

Influence Of Mechanical Properties Of Paper Coating On The Crack At The Fold Problem, Seyyed Mohammad Hashemi Najafi

Electronic Theses and Dissertations

Paper coating layers are subject to various stresses and deformations in many converting processes such as calendering, printing, slitting, and folding of the paper. In some cases, products may crack during folding to generate a defect called cracking at the fold (CAF). The parameters that influence these defects are not well understood. The overall goal of this thesis is to better understand the CAF behavior as related to material properties of the coating layer.

A method was developed to produce free-standing pigmented coating layers thick enough to be tested in bending as well as tension. The mechanical properties of these …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


Development Of Stage-I Tempered High Strength Cast Steel For Ground Engaging Tools, Viraj Ashok Athavale Jan 2019

Development Of Stage-I Tempered High Strength Cast Steel For Ground Engaging Tools, Viraj Ashok Athavale

Doctoral Dissertations

"Ground Engaging Tools (GET) are the expendable replacement parts used in heavy machinery used with mining or construction equipment. GET’s protect the expensive machine components from the wear and tear found common in high-impact or high-abrasion environments. The goal of this project is to develop advanced next-generation alloy choices that outperforms the existing GET materials. A method of predicting tempered hardness of mixed microstructures was formulated. Using this model, two alloy series viz. Cr-Ni-Mo and Mn-Si-Mo-V were proposed and experimented with the goal of obtaining a high strength and impact resistant cast steel. Cast iterations of Cr-Ni-Mo alloy series were …


Aging Response And Precipitation Behavior After 5% Pre-Deformation Of An Al-Mg-Si-Cu Alloy, Shuoxun Jin, Tungwai Ngai, Liejun Li, Shian Jia, Tongguang Zhai, Dongjie Ke Aug 2018

Aging Response And Precipitation Behavior After 5% Pre-Deformation Of An Al-Mg-Si-Cu Alloy, Shuoxun Jin, Tungwai Ngai, Liejun Li, Shian Jia, Tongguang Zhai, Dongjie Ke

Chemical and Materials Engineering Faculty Publications

In this study, Al-1.00 Mg-0.65 Si-0.24 Cu alloy was solution heat-treated, water-quenched, and then pre-deformed for 5% before aging. The peak hardness and yield strength of the pre-deformed sample with subsequent artificial aging were similar to that of a T6 condition sample. It was also found that the pre-deformation treatment could inhibit the negative influence of natural aging to some degree. After seven days of natural aging, the pre-deformed sample obtained better peak hardness and yield strength upon artificial aging than the sample without pre-deformation. In addition, the pre-deformation treatment could reduce 50% of the artificial aging time to reach …


Evaluation Of Metallurgical And Mechanical Properties Of Alsi10mg Produced By Selective Laser Melting, Luke J. Suttey Apr 2018

Evaluation Of Metallurgical And Mechanical Properties Of Alsi10mg Produced By Selective Laser Melting, Luke J. Suttey

Graduate Theses & Non-Theses

Selective laser melting (SLM) additive manufacturing (AM) of metal powders has long been a focus in the study of AM due to the possibility of weight reduction, complex shape formation, and production cost savings. Although applicable to a variety of metals SLM AM of the AlSi10Mg alloy was studied in an attempt to characterize the effect of processing parameter and build angle variation on the final microstructural, fractographic, and mechanical properties of parts produced without any thermal post-processing techniques. Research was conducted on five build angles (0°, 30°, 45°, 60°, and 90°), and three Global Energy Densities (GED) (37.15, 45.39, …


Characterization Of Process Induced Defects In Laser Powder Bed Fusion Processed Alsi10mg Alloy, Edward Stugelmayer Apr 2018

Characterization Of Process Induced Defects In Laser Powder Bed Fusion Processed Alsi10mg Alloy, Edward Stugelmayer

Graduate Theses & Non-Theses

Additive manufacturing using laser powder bed fusion (AM-LPBF) methods have recently experienced rapid growth and development, having the potential to replace manufacturing by plastic deformation, precision machining, or casting. AM offers advantages such as the freedom to design highly complex geometries, time and cost savings through material usage efficiency and shortened production cycles, and the potential for improved mechanical properties. Process induced defects, however, result in degradation and scattering of mechanical properties and hinder the widespread adoption of AM-LPBF in industry. This investigation focuses on the effects of varying energy density and build orientation on the evolution of process induced …


Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal Feb 2018

Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal

Electronic Thesis and Dissertation Repository

Scaffolds are key components for bone tissue engineering and regeneration. They guide new bone formation by mimicking bone extracellular matrix for cell recruitment and proliferation. Ideally, scaffolds for bone tissue engineering need to be osteoconductive, osteoinductive, porous, degradable and mechanically competent. As a single material can not provide all these requirements, composites of several biomaterials are viable solutions to combine various properties. However, conventional composites fail to fulfil these requirements due to their distinct phases at the microscopic level. Organic/inorganic (O/I) class II hybrid biomaterials, where the organic and inorganic phases are chemically crosslinked on a molecular scale, hence the …


Characterization Of 3d Printed Polylactic Acid/ Polycaprolactone/Titanium Dioxide Composites For Bone Replacement And Grafting, Sandra Elena Najera Beltran Jan 2018

Characterization Of 3d Printed Polylactic Acid/ Polycaprolactone/Titanium Dioxide Composites For Bone Replacement And Grafting, Sandra Elena Najera Beltran

Open Access Theses & Dissertations

A material that mimics the properties of bones was developed by optimizing the ratio of polymer composites of polylactic acid (PLA) and poly-ε-caprolactone (PCL), containing small amounts of titanium oxide (TiO2). Although titanium-based alloys have commonly been used for bone replacement procedures due to their biocompatibility with the human body and their mechanical properties, stress shielding continues to be a problem. The structure of a bone has a porosity which permits the flow of nutrients, blood, oxygen and minerals, and is an issue at the time of creating bone replacements using conventional methods. PLA and PCL have been used in …


Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites For Extrusion-Based Additive Manufacturing, Lu Wang Dec 2017

Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites For Extrusion-Based Additive Manufacturing, Lu Wang

Electronic Theses and Dissertations

Compared to conventional manufacturing process, additive manufacturing (AM) offers free-form design, lighter and more ergonomic products, short lead time and less waste. Extrusion-based AM can be used to print thermoplastics. However, extrusion-based AM has processing challenges in printing semi-crystalline thermoplastics, for instance, polypropylene (PP). Cellulose nanofibrils (CNF) are one type of cellulose nanofibers that are produced from pulp fibers. CNF has extraordinary properties which make it an ideal candidate to reinforce polymers. Spray-dried CNF (SDCNF) is able to be incorporated into thermoplastic matrices without modifying conventional processing procedures.

The mechanical properties of 3D printed plastic parts have been considered significantly …


Physical And Mechanical Properties Of Palm Kernel Oil-Based Polyester Polyurethane/Multi-Walled Carbon Nanotube Composites, Khairul Anuar Mat Amin, Muhammad Alif Zailani, Nurul Nabilah Zulkifli, Khairiah Haji Badri Aug 2017

Physical And Mechanical Properties Of Palm Kernel Oil-Based Polyester Polyurethane/Multi-Walled Carbon Nanotube Composites, Khairul Anuar Mat Amin, Muhammad Alif Zailani, Nurul Nabilah Zulkifli, Khairiah Haji Badri

Makara Journal of Technology

In this study, polyurethane (PU) films from palm kernel oil-based polyester (PKO-p) incorporated multi-walled carbon nanotubes (MWNTs) are prepared via a evaporative casting method. Nanoparticle fluid dispersions containing 0.02%, 0.03%, and 0.05% wt. of MWNTs are added into PKO-p based resin and mixed by digital probe sonicator for 30 min followed by mixing with isocyanate to produce PU-MWNTs composite films. The mechanical properties, swelling, water vapour transmission rate (WVTR) and conductivity of the PU-MWNTs composite films are examined. Results show that the toughness (T) or flexibility, the tensile strength (TS), and Young’s modulus (YM) values of PU-MWNTs composite films increase …


Mechanical Characterization Of Parts Produced By Ceramic On‐Demand Extrusion Process, Amir Ghazanfari, Wenbin Li, Ming Leu, Gregory Hilmas Jan 2017

Mechanical Characterization Of Parts Produced By Ceramic On‐Demand Extrusion Process, Amir Ghazanfari, Wenbin Li, Ming Leu, Gregory Hilmas

Faculty Publications, Mechanical Engineering

Ceramic On‐Demand Extrusion (CODE) is an additive manufacturing process recently developed to produce dense three‐dimensional ceramic components. In this paper, the properties of parts produced using this freeform extrusion fabrication process are described. High solids loading (~60 vol%) alumina paste was prepared to fabricate parts and standard test methods were employed to examine their properties including the density, strength, Young's modulus, Weibull modulus, toughness, and hardness. Microstructural evaluation was also performed to measure the grain size and critical flaw size. The results indicate that the properties of parts surpass most other ceramic additive manufacturing processes and match conventional fabrication techniques.


Molecular Modeling Of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy, Matthew Radue Jan 2017

Molecular Modeling Of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy, Matthew Radue

Dissertations, Master's Theses and Master's Reports

Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices.

The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young’s modulus, yield point, and Poisson’s ratio …


Microstructural Evolution And Mechanical Properties Of Zn-Ti Alloys For Biodegradable Stent Applications, Zhiyong Yin Jan 2017

Microstructural Evolution And Mechanical Properties Of Zn-Ti Alloys For Biodegradable Stent Applications, Zhiyong Yin

Dissertations, Master's Theses and Master's Reports

Stents made of biodegradable metallic materials are increasingly gaining interest within the biomaterials field because of their superior mechanical properties and biodegradation rates as compared to polymeric materials. Zinc and its alloys have been developed and investigated as possible candidates for biodegradable stent applications in the last five years. This study intended to formulate and characterize a new series of Zn-Ti alloys, with titanium additions of less than 1-3 wt%, with the primary objective to develop and select an alloy that meets benchmark values of mechanical properties for biodegradable stents. A series of Zn-Ti alloys was formulated through vacuum induction …


Processing, Microstructure And Mechanical Properties Of Beta-Type Titanium Porous Structures Made By Additive Manufacturing, Yujing Liu Jan 2017

Processing, Microstructure And Mechanical Properties Of Beta-Type Titanium Porous Structures Made By Additive Manufacturing, Yujing Liu

Theses: Doctorates and Masters

Tissue engineering through the application of a low modulus, high strength format as a potential approach for increasing the durability of bone implants has been attracting significant attention. Titanium alloys are widely used for biomedical applications because of their low modulus, high biocompatibility, specific strength and corrosion resistance. These reasons affirm why titanium alloy is selected as the specific material to research. The development of low modulus biomaterials is considered to be an effective method to remove the mismatch between biomaterial implants and surrounding bone tissue, thereby reducing the risk of bone resorption. So far, Ti–24Nb–4Zr–8Sn alloy (abbreviated hereafter as …


Study On Mechanical Properties Of Silicone Rubber Materials Used As Gaskets In Pem Fuel Cell Environment, Guo Li Oct 2016

Study On Mechanical Properties Of Silicone Rubber Materials Used As Gaskets In Pem Fuel Cell Environment, Guo Li

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Effect Of Ti Content On Microstructure And Strength Of The Self-Joining Of Zrb2–Sic With Pd–Co–Ti Filler Metals, Jie Zhang, Jiayin Liu, Chungfeng Liu, Tianpeng Wang Oct 2016

Effect Of Ti Content On Microstructure And Strength Of The Self-Joining Of Zrb2–Sic With Pd–Co–Ti Filler Metals, Jie Zhang, Jiayin Liu, Chungfeng Liu, Tianpeng Wang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Influence Of Pre-Stretching On The Subsequent Creep Aging Behavior Of Aluminum Alloy 2524, Yongqian Xu, Lihua Zhan, Minghui Huang, Youliang Yang Oct 2016

Influence Of Pre-Stretching On The Subsequent Creep Aging Behavior Of Aluminum Alloy 2524, Yongqian Xu, Lihua Zhan, Minghui Huang, Youliang Yang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Low-Temperature Bainite Transformation Behavior And Microstructure And Mechanical Properties Of A Medium-Carbon High-Strength Steel For Railway Forging Upper Core Plate, Xiaofeng Qin, Shihai Cui, An Wang Oct 2016

Low-Temperature Bainite Transformation Behavior And Microstructure And Mechanical Properties Of A Medium-Carbon High-Strength Steel For Railway Forging Upper Core Plate, Xiaofeng Qin, Shihai Cui, An Wang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Properties That Characterize The Material X46cr13 Steel, Josip Brnic, Sanjin Krscanski, Marino Brcic, Jitai Niu Oct 2016

Properties That Characterize The Material X46cr13 Steel, Josip Brnic, Sanjin Krscanski, Marino Brcic, Jitai Niu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Mechanical Properties Of Stainless Steels With Heterogeneous Nanostructures, Hiromi Miura, Masakazu Kobayashi, Natuko Sugiura, Naoki Yoshinaga Oct 2016

Mechanical Properties Of Stainless Steels With Heterogeneous Nanostructures, Hiromi Miura, Masakazu Kobayashi, Natuko Sugiura, Naoki Yoshinaga

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Effect Of Ni Content And Brazing Temperature On The Self Joining Of Zrb2–Sic, Jiayin Liu, Jie Zhang, Chunfeng Liu, Tianpeng Wang Oct 2016

Effect Of Ni Content And Brazing Temperature On The Self Joining Of Zrb2–Sic, Jiayin Liu, Jie Zhang, Chunfeng Liu, Tianpeng Wang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Slm Processing-Microstructure-Mechanical Property Correlation In An Aluminum Alloy Produced By Additive Manufacturing, Bryce Abstetar Oct 2016

Slm Processing-Microstructure-Mechanical Property Correlation In An Aluminum Alloy Produced By Additive Manufacturing, Bryce Abstetar

Graduate Theses & Non-Theses

Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all …


Equiaxed Ti-Based Composites With High Strength And Large Plasticity Prepared By Sintering And Crystallizing Amorphous Powder, Lehua Liu, Chao Yang, L. M. Kang, Yan Long, Zhiyu Xiao, Peijie Li, Laichang Zhang Jan 2016

Equiaxed Ti-Based Composites With High Strength And Large Plasticity Prepared By Sintering And Crystallizing Amorphous Powder, Lehua Liu, Chao Yang, L. M. Kang, Yan Long, Zhiyu Xiao, Peijie Li, Laichang Zhang

Research outputs 2014 to 2021

High-performance titanium alloys with an equiaxed composite microstructure were achieved by sintering and crystallizing amorphous powder. By introducing a second phase in a β-Ti matrix, series of optimized Ti-Nb-Fe-Co-Al and Ti-Nb-Cu-Ni-Al composites, which have a microstructure composed of ultrafine-grained and equiaxed CoTi2 or (Cu,Ni)Ti2 precipitated phases surrounded by a ductile β-Ti matrix, were fabricated by sintering and crystallizing mechanically alloyed amorphous powder. The as-fabricated composites exhibit ultra-high ultimate compressive strength of 2585MPa and extremely large compressive plastic strain of around 40%, which are greater than the corresponding ones for most titanium alloys. In contrast, the alloy fabricated by …


Improving The Capacity, Durability And Stability Of Lithium-Ion Batteries By Interphase Engineering, Qinglin Zhang Jan 2016

Improving The Capacity, Durability And Stability Of Lithium-Ion Batteries By Interphase Engineering, Qinglin Zhang

Theses and Dissertations--Chemical and Materials Engineering

This dissertation is focus on the study of solid-electrolyte interphases (SEIs) on advanced lithium ion battery (LIB) anodes. The purposes of this dissertation are to a) develop a methodology to study the properties of SEIs; and b) provide guidelines for designing engineered SEIs. The general knowledge gained through this research will be beneficial for the entire battery research community.