Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical properties

Materials Science and Engineering

Institution
Publication Year
Publication
Publication Type
File Type

Articles 61 - 90 of 97

Full-Text Articles in Engineering

Cellulose Nanofibers Networks For Structural Nanomaterials And Biocomposites With Multiple Functions, Lars Berglund Nov 2015

Cellulose Nanofibers Networks For Structural Nanomaterials And Biocomposites With Multiple Functions, Lars Berglund

Composites at Lake Louise (CALL 2015)

Cellulose-based composites offer interesting potential as environmentally friendly materials. Wood nanocellulose disintegrated from chemical pulp is an interesting component, which can be used in materials of increased structural, sophistication, extended property range and new functions [1]. The network forming character of cellulose nanofibers (CNF) makes it possible to form other types of nanomaterials than biocomposites such as nanopaper, aerogels, hydrogels, foams and honeycombs. The CNF can also be combined with inorganic nanoparticles to prepare organic/inorganic hybrid materials.

The structure of CNF is discussed and routes to improve the properties of the CNF are suggested. For the purpose of nanomaterials preparation, …


High Temperature Nanoindentation Testing Of Amorphous Silicon Carbonitride Thin Films, Radim Ctvrtlik, Marwan Al-Haik, Valeriy Kilikovsky Oct 2015

High Temperature Nanoindentation Testing Of Amorphous Silicon Carbonitride Thin Films, Radim Ctvrtlik, Marwan Al-Haik, Valeriy Kilikovsky

Nanomechanical Testing in Materials Research and Development V

The mechanical properties of amorphous silicon carbonitride (SiCxNy) films with various nitrogen content (y = 0-40 at.%) were investigated in-situ at elevated temperatures up to 650 °C in inert atmosphere. The hardness and elastic modulus were evaluated using depth sensing nanoindentation with cubic boron nitride Berkovich indenter. Both the sample and indenter were separately heated during the experiments to temperatures 300, 500 and 650 °C. Short duration high temperature creep (1200 s) of the films was also investigated. The results revealed that the room temperature hardness and elastic modulus decline with the increase of the nitrogen …


Mechanical And Electro-Mechanical Properties Of Crystalline Organic Semiconductors, Marcos A. Reyes-Martinez Aug 2015

Mechanical And Electro-Mechanical Properties Of Crystalline Organic Semiconductors, Marcos A. Reyes-Martinez

Doctoral Dissertations

The study of the physical properties of organic crystalline semiconductors has allowed the advent of a new generation of high-performance organic electronic devices. Exceptional charge-transport properties and recent developments in large-area patterning techniques make organic single crystals (OSCs) excellent candidates for their utilization in the next-generation of electronic technologies, including flexible and conformable organic thin-film devices. In spite of the profound knowledge of the structural and electrical properties of OSCs, knowledge of the mechanical properties and the effects of mechanical strain is almost non-existent. This dissertation aims to bring new understanding of the intrinsic mechanical properties and the effect of …


Effect Of Heat Treatment On The Mechanical Properties In Natural Bamboo, Austin Levy, Mackenzie Kirkpatrick Jun 2015

Effect Of Heat Treatment On The Mechanical Properties In Natural Bamboo, Austin Levy, Mackenzie Kirkpatrick

Materials Engineering

Previous studies have shown that heat treatments have the ability to improve mechanical strength and stiffness in hardwood species. Compared to structural hardwoods, bamboo is a more sustainable and globally viable renewable resource. Therefore, Bambusoides vivax (timber bamboo) culms were fabricated into flat, rectangular cross-section samples with varying cellulose content to be heat treated and tested for mechanical properties. All samples were heat treated (HT) twice. The first HT was a normalization of all samples at 103 +/- 3 °C. The second HT was performed at various times and temperatures ranging from 130°C to 170°C for 0.5 to 3 hours. …


Synthesis, Characterization And Applications Of Lignin-Based Epoxy Resins, Fatemeh Ferdosian Apr 2015

Synthesis, Characterization And Applications Of Lignin-Based Epoxy Resins, Fatemeh Ferdosian

Electronic Thesis and Dissertation Repository

Epoxy resin is one of the most versatile thermosetting polymers with diverse applications. Epoxy resins are mainly produced from the reaction of bisphenol-A (BPA) and epichlorohydrin. The consumption of bisphenol-A is facing growing concerns over its carcinogenic effects and its sustainability. Lignin can be a promising renewable substitute of bisphenol-A in the synthesis of epoxy resins.

In this thesis work, a novel method has been developed for the synthesis of bio-based epoxy resins with reduced side reactions, employing de-polymerized lignin from organosolv lignin (DOL), kraft lignin (DKL) and hydrolysis lignin (DHL) under alkaline condition in the presence of a phase …


Elastic And Electronic Properties Of Ti2al(Cxn1−X) Solid Solutions, Sitaram Aryal, Ridwan Sakidja, Lizhi Ouyang, Wai-Yim Ching Apr 2015

Elastic And Electronic Properties Of Ti2al(Cxn1−X) Solid Solutions, Sitaram Aryal, Ridwan Sakidja, Lizhi Ouyang, Wai-Yim Ching

Mathematical Sciences Faculty Research

The elastic coefficients and mechanical properties (bulk modulus, shear modulus, Young's modulus and Poisson's ratio) of Ti2Al(CxN1−x) continuous solid solutions for x from 0 to 1 are calculated using ab initio DFT methods on 4×4×1 supercell models. It is shown that the properties of these solid solutions do not vary linearly with x. Although the lattice constant c is almost constant for x≤0.5, a increases linearly. For x>0.5, c starts to increase with x while the rate of increase in a slows down. For x between 0.5 and 0.85, the elastic coefficients and the mechanical parameters show interesting dependence …


Thermal Processing And Mechanical Properties Of Beta Phase Titanium Alloys For Biomedical Applications, Ethan Wood Apr 2015

Thermal Processing And Mechanical Properties Of Beta Phase Titanium Alloys For Biomedical Applications, Ethan Wood

Graduate Theses & Non-Theses

The past few decades have seen an increase in the use of beta titanium alloys as structural biomaterials. Their combination of excellent mechanical properties, corrosion resistance and biocompatibility, along with a lower Young’s modulus than stainless steel, cobalt-chromium and commercially pure titanium make the beta titanium alloys ideal biomaterials. This work evaluates the use of three beta titanium alloys for biomedical applications. Three beta titanium alloys, Ti 15-3-3-3, Ti SP-700 and Ti Beta-C, underwent thermal processing to optimize mechanical properties. The alloys were subjected to tensile testing, hardness testing, fatigue testing, optical microscopy and SEM fracture analysis in order to …


Thermal Shock Studies On Carbon-Carbon Composites: Experimentation And Analysis, Alma Lucia Leanos Jan 2015

Thermal Shock Studies On Carbon-Carbon Composites: Experimentation And Analysis, Alma Lucia Leanos

Open Access Theses & Dissertations

The oxidation behavior of C/C composites under thermal shock conditions in air is understood and predicted experimentally and by computational efforts. In Chapter. 1, both compressive properties and oxidation behavior of pristine and thermal shock exposed 2D C/C composite specimens were examined. Pristine test specimens were exposed to thermal shock conditions with temperatures ranging from 400°C to 1000°C in an oxidizing environment, followed by compression tests on pristine and thermal shock exposed specimens to obtain their compressive responses.

Similarly, in Chapter. 2, the influence of thermal shock conditions on both, the extent of carbon materials decomposition and the through-thickness compressive …


Single Fiber Mechanical Properties Using Nano-Tensile Testing And Carbon Fiber Structure-Property Relationship, Matthew Erich Kant Dec 2014

Single Fiber Mechanical Properties Using Nano-Tensile Testing And Carbon Fiber Structure-Property Relationship, Matthew Erich Kant

Doctoral Dissertations

Single carbon fibers are studied using a nano-tensile testing system. This system has unprecedented load and displacement resolution, nN and nm respectively, and the ability to perform dynamic testing for storage and loss modulus during quasi-static tensile extension. Furthermore, improved fiber mounting and alignment procedures coupled with the precision of the nano-tensile testing system assist in unprecedented resolution in single fiber mechanical testing for axial modulus and strength. Hence, using these unique capabilities, the moduli and their statistical distribution of many high performance carbon fibers are reported here. From this, a simplified single parameter model describing the strain dependent modulus …


Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph Nov 2014

Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph

Doctoral Dissertations

The ability to define and control the topography of a surface has been studied extensively due to its importance in a wide variety of applications. The control of a non-planar topography would be very valuable since a number of structures that are pervasive in artificial applications (e.g. fibers, lenses) are curved interfaces. This potential of enabling applications that incorporate non-planar geometries was the motivation for this thesis. The first study of this thesis comprises the study of patterning the circumference of micrometer sized fibers. Specifically, a unique technique was described to pattern the fiber with a periodic array of colloids. …


Temperature And Alloying Effects On The Mechanical Properties Of Equiatomic Fcc Solid Solution Alloys, Zhenggang Wu Aug 2014

Temperature And Alloying Effects On The Mechanical Properties Of Equiatomic Fcc Solid Solution Alloys, Zhenggang Wu

Doctoral Dissertations

Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic …


An Investigation Of The Effect Of Direct Metal Deposition Parameters On The Characteristics Of The Deposited Layers, Tarak A. Amine, Joseph William Newkirk, Frank W. Liou Jul 2014

An Investigation Of The Effect Of Direct Metal Deposition Parameters On The Characteristics Of The Deposited Layers, Tarak A. Amine, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

Multilayer direct laser deposition (DLD) is a fabrication process through which parts are fabricated by creating a molten pool into which metal powder is injected as particles. During fabrication, complex thermal activity occurs in different regions of the build; for example, newly deposited layers will reheat previously deposited layers. The objective of this study was to provide insight into the thermal activity that occurs during the DLD process. This work focused on the effect of the laser parameters of newly deposited layers on the microstructure and mechanical properties of the previously deposited layers in order to characterize these effects to …


Influence Of Grain Size And Widmanstätten Colonies On Variability Of Tensile Properties Of Forged Ti-6al-4v, Blake T. Gaspar Jun 2014

Influence Of Grain Size And Widmanstätten Colonies On Variability Of Tensile Properties Of Forged Ti-6al-4v, Blake T. Gaspar

Master's Theses

When testing forgings for specifications, it was found that some parts did not meet the requirements for mechanical properties. This triggered an investigation into two of the parts from the lot that did not meet specification. The ultimate reason for failure was due to lower than necessary yield strength and ultimate tensile strength values, as well as unwanted variability between regions of the part. Therefore, samples of the regions were tensile tested to determine the differences that existed in yield strength, ultimate tensile strength, and elongation. After tensile testing, quantitative metallography and fractography were conducted to identify aspects of the …


Development Of Practical Applications For Reprap Style 3-D Printers In Engineering, Benjamin T. Wittbrodt Jan 2014

Development Of Practical Applications For Reprap Style 3-D Printers In Engineering, Benjamin T. Wittbrodt

Dissertations, Master's Theses and Master's Reports - Open

The current rise in popularity of consumer level 3-D printers introduces a need to understand the application and material property capabilities of the technology. Presented here is data demonstrating the ability for the average U.S. consumer to recuperate the cost of a 3-D printer within one year of ownership. Additionally, using a consumer level 3-D printer, multiple photovoltaic (PV) racking systems were printed and produced with much lower cost compared to commercially available aluminum racking. Additionally, mechanical testing on 3-D printed components showed a temperature dependence on both percent crystallinity and ultimate tensile strength. Conclusions are drawn using the information …


A Tensile Deformation Model For In-Situ Dendrite/Metallic Glass Matrix Composites, J. W. Qiao, T. Zhang, Fuqian Yang, P. K. Liaw, S. Pauly, B. S. Xu Oct 2013

A Tensile Deformation Model For In-Situ Dendrite/Metallic Glass Matrix Composites, J. W. Qiao, T. Zhang, Fuqian Yang, P. K. Liaw, S. Pauly, B. S. Xu

Chemical and Materials Engineering Faculty Publications

In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti₄₆Zr₂₀V₁₂Cu₅Be₁₇ exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify …


Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte Aug 2013

Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The porosity and architecture of bone scaffolds, intended for use in bone repair or replacement, are two of the most important parameters in the field of bone tissue engineering. The two parameters not only affect the mechanical properties of the scaffolds but also aid in determining the amount of bone regeneration after implantation. Scaffolds with five different architectures and four porosity levels were fabricated using borate bioactive glass (13-93B3) using the selective laser sintering (SLS) process. The pore size of the scaffolds varied from 400 to 1300 μm. The compressive strength of the scaffolds varied from 1.7 to 15.5 MPa …


Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo Apr 2013

Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo

Electronic Thesis and Dissertation Repository

Treatments of bone injuries and defects have been largely centered on replacing the lost bone with tissues of allogeneic or xenogeneic sources as well as synthetic bone substitutes, which in all lead to limited degree of structural and functional recovery. As a result, tissue engineering has emerged as a viable technology to regenerate the structures and therefore recover the functions of bone tissue rather than replacement alone. Hence, the current strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate and function.

In this …


Scandia And Ceria Stabilized Zirconia Based Electrolytes And Anodes For Intermediate Temperature Solid Oxide Fuel Cells: Manufacturing And Properties, Yan Chen Jan 2013

Scandia And Ceria Stabilized Zirconia Based Electrolytes And Anodes For Intermediate Temperature Solid Oxide Fuel Cells: Manufacturing And Properties, Yan Chen

Electronic Theses and Dissertations

Mesoscale optical phenomena occur when light interacts with a number of different types of materials, such as biological and chemical systems and fabricated nanostructures. As a framework, mesoscale optics unifies the interpretations of the interaction of light with complex media when the outcome depends significantly upon the scale of the interaction. Most importantly, it guides the process of designing an optical sensing technique by focusing on the nature and amount of information that can be extracted from a measurement. Different aspects of mesoscale optics are addressed in this dissertation which led to the solution of a number of problems in …


Preparation And Characterization Of Highly Filled Graphite-Based Polybenzoxazine Composites, A. Pengdam, S. Rimdusit Dec 2012

Preparation And Characterization Of Highly Filled Graphite-Based Polybenzoxazine Composites, A. Pengdam, S. Rimdusit

Journal of Metals, Materials and Minerals

This research aims to study suitable preparation methods and to characterize highly filled graphite composites using polybenzoxazine as a matrix. The high loading of graphite filler was attained in the range of 40 to 80% by wt. due to the very low a-stage viscosity of the benzoxazine resin (BA-a) used. The suitable condition for the compression molding of the highly filled graphite-polybenzoxazine (PBA-a) composites was at temperature of 200°C, and pressure of 15 MPa in the hydraulic hot-press machine for 3 hours to assure a fully cured specimen. The densities of the obtained composites were found to be in a …


Freeze-Form Extrusion Fabrication Of Functionally Graded Material Composites Using Zirconium Carbide And Tungsten, Ang Li, Aaron S. Thornton, Bradley K. Deuser, Jeremy Lee Watts, Ming-Chuan Leu, Greg Hilmas, Robert G. Landers Aug 2012

Freeze-Form Extrusion Fabrication Of Functionally Graded Material Composites Using Zirconium Carbide And Tungsten, Ang Li, Aaron S. Thornton, Bradley K. Deuser, Jeremy Lee Watts, Ming-Chuan Leu, Greg Hilmas, Robert G. Landers

Materials Science and Engineering Faculty Research & Creative Works

Ultra-high-temperature ceramics are being investigated for future use in aerospace applications due to their superior thermo-mechanical properties, as well as their oxidation resistance, at temperatures above 2000⁰C. However, their brittleness makes them susceptible to thermal shock failure. As graded composites, components fabricated as functionally-graded materials (FGMs) can combine the superior properties of ceramics with the toughness of an underlying refractory metal. This paper discusses the grading of two materials through the use of a Freeze-form Extrusion Fabrication (FEF) system to build FGM parts consisting of zirconium carbide (ZrC) and tungsten (W). Aqueous-based colloidal suspensions of ZrC and W were developed …


Lumbar Vertebral Density And Mechanical Properties In Aged Ovariectomized Rats Treated With Estrogen And Norethindrone Or Norgestimate, Carla Vanin, Neil Maclusky, Debbie Chachra, Mehran Kasra, Marc Grynpas, Robert Casper Jul 2012

Lumbar Vertebral Density And Mechanical Properties In Aged Ovariectomized Rats Treated With Estrogen And Norethindrone Or Norgestimate, Carla Vanin, Neil Maclusky, Debbie Chachra, Mehran Kasra, Marc Grynpas, Robert Casper

Debbie Chachra

OBJECTIVE: This study was designed to investigate the effects of estrogen alone or combined with two different progestins, norethindrone or norgestimate, on bone density and compressive mechanical properties in an aged rat model.

STUDY DESIGN: Twenty 11-month-old female Sprague-Dawley rats were sham operated (intact control) and 80 wee overiectomized. Three groups of 20 ovariectomized rats were implanted with Silastic silicon rubber (Dow Corning, Midland, Mich.) capsules containing 5% estradiol (wt/wt) in cholesterol. All rats in the intact control (group 1) and the ovariectomized (group 2) and the first of the overiectomized plus estrogen (group 3) groups were injected subcutaneously daily …


The Influence Of Heterogeneous Meninges On The Brain Mechanics Under Primary Blast Loading, Linxia Gu, Mehdi S. Chafi, Shailesh Ganpule, Namas Chandra Apr 2012

The Influence Of Heterogeneous Meninges On The Brain Mechanics Under Primary Blast Loading, Linxia Gu, Mehdi S. Chafi, Shailesh Ganpule, Namas Chandra

Department of Mechanical and Materials Engineering: Faculty Publications

In the modeling of brain mechanics subjected to primary blast waves, there is currently no consensus on how many biological components to be used in the brain–meninges–skull complex, and what type of constitutive models to be adopted. The objective of this study is to determine the role of layered meninges in damping the dynamic response of the brain under primary blast loadings. A composite structures composed of eight solid relevant layers (including the pia, cerebrospinal fluid (CSF), dura maters) with different mechanical properties are constructed to mimic the heterogeneous human head. A hyper-viscoelastic material model is developed to better represent …


Effect Of Copper Addition On Mechanical Properties And Electrical Conductivity Of Pp/C-Cu Bipolar Plate Composites, Anne Zulfia, Taufik Abimanyu, Verina Warga Dalam Nov 2011

Effect Of Copper Addition On Mechanical Properties And Electrical Conductivity Of Pp/C-Cu Bipolar Plate Composites, Anne Zulfia, Taufik Abimanyu, Verina Warga Dalam

Makara Journal of Technology

Effect of Copper Addition on Mechanical Properties and Electrical Conductivity of PP/C-Cu Bipolar Plate Composites. Bipolar plate is a major component in PEM fuel cell which possess main function of collecting and removing electrons from anode to cathode. Therefore, materials for bipolar plates produced must have high electrical conductivity. To obtain bipolar plate materials which is cheap, lightweight and high conductivity, so it is developed bipolar plates material based on PP/C-Cu composite. PP/C-Cu composites has been made by mixing all materials then compounding, rheomix, hot blending and hot press. Cu (Copper) has been used various from 0.1 wt%, 1 wt% …


Medium Density Fibreboard Made Of Acetylated Sludge From Paper Mill, Luthfi Hakim, Evalina Herawati, I Nyoman Jaya Wistara Nov 2011

Medium Density Fibreboard Made Of Acetylated Sludge From Paper Mill, Luthfi Hakim, Evalina Herawati, I Nyoman Jaya Wistara

Makara Journal of Technology

Medium Density Fibreboard Made of Acetylated Sludge from Paper Mill. Research of using sludge as raw material for making medium density fibreboard (MDF) was useful to create additional value of sludge. The objective of the research was to evaluate physical properties, mechanical properties, and durability of MDF from acetylated sludge in 4 levels of acetate anhydride (0%, 3%, 5%, and 7%) with 3 replicates. The MDF was made using dry process. After materials were mixed with adhesives, they were pressed using hotpress under 170 oC temperature and 45 Pa pressure for 25 minutes. The size of the MDF sample was …


Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2011

Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Particle size, binder content and the post-processing schedule are important parameters that affect the microstructure, and, hence, the mechanical properties of parts produced using the indirect selective laser sintering process. 13-93 bioactive glass, with mean particle sizes ranging from 10 μm to 44 μm, is mixed with different amounts of stearic acid binder to fabricate green scaffolds. Through the design of the post-processing schedule, the time required for postprocessing the green scaffolds is reduced from the initial 80 hrs to 12 hrs. The compressive strength varies from 41 MPa for a part with~60% porosity to 157 MPa for a part …


Effect Of Sintering On Microstructure And Properties Of Hydroxyapatite Produced By Different Synthesizing Methods, N Monmaturapoj, C Yatongchai Dec 2010

Effect Of Sintering On Microstructure And Properties Of Hydroxyapatite Produced By Different Synthesizing Methods, N Monmaturapoj, C Yatongchai

Journal of Metals, Materials and Minerals

The aim of this study is to investigate the effect of the sintering schedule on microstructure and properties of hydroxyapatite which is produced by different synthesizing methods. Hence, wet-chemical precipitation and solid-state reaction were performed to prepare nano-sized hydroxyapatite (HA) powders. Powders were then uniaxially pressed and sintered by varying temperatures and times. XRD and SEM were used to identify phases and morphology. Density and porosity of the sintered sample were determined using the Archimedes technique. Flexural strength was measured by a universal testing machine. The results show that density and strength could be improved by increasing the sintering temperature …


Optimizing The Mechanical Properties Of Partially Yttria Stabilized Zirconia With Alumina Additions, Ramanaganapathy Kandaswamy Dec 2010

Optimizing The Mechanical Properties Of Partially Yttria Stabilized Zirconia With Alumina Additions, Ramanaganapathy Kandaswamy

All Theses

Zirconia is one of the extensively studied solid oxide ceramics with respect to its use in various industrial applications like electrolyte in fuel cells, sensors, refractories and exhaust chamber in automobile industry. It can be found from the literature 1-4 that are contradictory results on the mechanical properties when alumina is added. There are several factors like microstructure, phase composition and method of processing that affects the mechanical properties of the material. The focus of this research is to examine how hardness, tensile strength and other properties varies with alumina content and deduce the optimal amount of alumina that is …


Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day Aug 2010

Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day

Materials Science and Engineering Faculty Research & Creative Works

There is an increasing demand for synthetic scaffolds with the requisite biocompatibility, internal architecture, and mechanical properties for the bone repair and regeneration. In this work, scaffolds of a silicate bioactive glass (13-93) were prepared by a freeze extrusion fabrication (FEF) method and evaluated in vitro for potential applications in bone repair and regeneration. The process parameters for FEF production of scaffolds with the requisite microstructural characteristics, as well as the mechanical and cell culture response of the scaffolds were evaluated. After binder burnout and sintering (60 min at 700°C), the scaffolds consisted of a dense glass network with interpenetrating …


Performance Of Nevada’S Aggregates In Alkali-Aggregate Reactivity Of Portland Cement Concrete, Mohammad Shahidul Islam May 2010

Performance Of Nevada’S Aggregates In Alkali-Aggregate Reactivity Of Portland Cement Concrete, Mohammad Shahidul Islam

UNLV Theses, Dissertations, Professional Papers, and Capstones

Alkali-aggregate reaction (AAR) is a form of distress that occurs in concrete and results in serviceability problems, cracks, spalling, and other deterioration mechanisms. There are two categories of AAR, namely, alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR). Alkali-silica reaction is one of the most recognized deleterious phenomena in concrete, and has been a major concern since its discovery in the 1940s. The reaction which occurs between reactive silica or silicates present in some aggregates and alkalis of Portland cement produces an alkali-silica gel that expands in the presence of moisture resulting in concrete cracks. ACR is also a chemical reaction …


Mechanical Properties Of Ramie Fiber Reinforced Epoxy Lamina Composite For Socket Prosthesis, Tresna P. Soemardi, Widjajalaksmi Kusumaningsih, Agustinus Purna Irawan Nov 2009

Mechanical Properties Of Ramie Fiber Reinforced Epoxy Lamina Composite For Socket Prosthesis, Tresna P. Soemardi, Widjajalaksmi Kusumaningsih, Agustinus Purna Irawan

Makara Journal of Technology

Mechanical properties of ramie fiber reinforced epoxy lamina composite for socket prosthesis. This paper presents an investigation into the application of natural fiber composite especially ramie fiber reinforced epoxy lamina composite for socket prosthesis. The research focuses on the tensile and shear strength from ramie fiber reinforced epoxy lamina composite which will be applied as alternative material for socket prosthesis. The research based on American Society for Testing Material (ASTM) standard D 3039/D 3039M for tensile strength and ASTM D 4255/D 4255M-83 for shear strength. The ramie fiber applied is a fiber continue 100 % Ne14'S with Epoxy Resin Bakelite …