Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

2023

Institution
Keyword
Publication
Publication Type
File Type

Articles 541 - 561 of 561

Full-Text Articles in Engineering

Impact Of Alumina-Based Binder On Formation Of Dense Strontium Zirconate Ceramics, Janos E. Kanyo, R. Sharon Uwanyuze, Jiyao Zhang, Rainer Hebert, Stefan Schafföner, Lesley Frame Jan 2023

Impact Of Alumina-Based Binder On Formation Of Dense Strontium Zirconate Ceramics, Janos E. Kanyo, R. Sharon Uwanyuze, Jiyao Zhang, Rainer Hebert, Stefan Schafföner, Lesley Frame

Materials Science and Engineering Faculty Research & Creative Works

Strontium zirconate (SrZrO3) is a technical ceramic with potential for refractory applications due to its chemical stability at high temperatures, high melting temperature, and favorable thermal expansion coefficient. Practical use of SrZrO3 is limited by poor mechanical strength relative to ceramics such as alumina (Al2O3). Sintering of SrZrO3 with a hydratable Al2O3 binder is investigated as a method for improving mechanical performance. Density, phase composition, thermomechanical properties, and chemical stability in contact with alloys up to 1350 °C are considered. Results are compared with SrZrO3 samples formed using a traditional polyvinyl alcohol (PVA) binder. SrZrO3 reacts with alumina during sintering …


Reduction Of Iron-Ore Pellets Using Different Gas Mixtures And Temperatures, Yuri Korobeinikov, Amogh Meshram, Christopher Harris, Olexandr Kovtun, Joe Govro, Ronald J. O'Malley, Olena Volkova, Seetharaman Sridhar Jan 2023

Reduction Of Iron-Ore Pellets Using Different Gas Mixtures And Temperatures, Yuri Korobeinikov, Amogh Meshram, Christopher Harris, Olexandr Kovtun, Joe Govro, Ronald J. O'Malley, Olena Volkova, Seetharaman Sridhar

Materials Science and Engineering Faculty Research & Creative Works

Direct reduction of iron ore (DRI) is gaining an increased attention due to the growing need to decarbonize industrial processes. The current industrial DRI processes are performed using reformed natural gas, which results in CO2 emission, although it is less than carbothermic reduction in the blast furnace. Carbon-free reduction may be realized through the utilization of green H2 as a reducing agent, in place of natural gas. Herein, the effects of various gas mixtures and temperature on the reduction kinetics of the hematite iron-ore pellets are focused on in this work. Pellets are reduced at 700, 800, 850, …


Performance Evaluation Of Composite Sandwich Structures With Additively Manufactured Aluminum Honeycomb Cores With Increased Bonding Surface Area, M. Rangapuram, S. K. Dasari, Joseph William Newkirk, K. Chandrashekhara, H. Misak, P. R. Toivonen, D. Klenosky, T. Unruh, J. Sam Jan 2023

Performance Evaluation Of Composite Sandwich Structures With Additively Manufactured Aluminum Honeycomb Cores With Increased Bonding Surface Area, M. Rangapuram, S. K. Dasari, Joseph William Newkirk, K. Chandrashekhara, H. Misak, P. R. Toivonen, D. Klenosky, T. Unruh, J. Sam

Materials Science and Engineering Faculty Research & Creative Works

Modern aerostructures, including wings and fuselages, increasingly feature sandwich structures due to their high-energy absorption, low weight, and high flexural stiffness. The face sheet of these sandwich structures are typically thin composite laminates with interior honeycombs made of Nomex or aluminum. Standard cores are structurally efficient, but their design cannot be varied throughout the structure. With additive manufacturing (AM) technology, these core geometries can be altered to meet the design requirements that are not met in standard honeycomb cores. This study used a modified aluminum honeycomb core, with increased surface area on the top and bottom, as the core material …


Final-Stage Densification Kinetics Of Direct Current–Sintered Zrb2, Austin D. Stanfield, Steven M. Smith, Suzana Filipović, Nina Obradović, Vladimir Buljak, Gregory E. Hilmas, William Fahrenholtz Jan 2023

Final-Stage Densification Kinetics Of Direct Current–Sintered Zrb2, Austin D. Stanfield, Steven M. Smith, Suzana Filipović, Nina Obradović, Vladimir Buljak, Gregory E. Hilmas, William Fahrenholtz

Materials Science and Engineering Faculty Research & Creative Works

Final-stage sintering was analyzed for nominally phase pure zirconium diboride synthesized by borothermal reduction of high-purity ZrO2. Analysis was conducted on ZrB2 ceramics with relative densities greater than 90% using the Nabarro–Herring stress–directed vacancy diffusion model. Temperatures of 1900°C or above and an applied uniaxial pressure of 50 MPa were required to fully densify ZrB2 ceramics by direct current sintering. Ram travel data were collected and used to determine the relative density of the specimens during sintering. Specimens sintered between 1900 and 2100°C achieved relative densities greater than 97%, whereas specimens sintered below 1900°C failed to …


Antioxidant Theranostic Copolymer-Mediated Reduction In Oxidative Stress Following Traumatic Brain Injury Improves Outcome In A Mouse Model, Aria W. Tarudji, Connor C. Gee, Hunter A. Miller, Rylie Steffen, Evan T. Curtis, Aaron M. Priester, Anthony J. Convertine, Forrest M. Kievit Jan 2023

Antioxidant Theranostic Copolymer-Mediated Reduction In Oxidative Stress Following Traumatic Brain Injury Improves Outcome In A Mouse Model, Aria W. Tarudji, Connor C. Gee, Hunter A. Miller, Rylie Steffen, Evan T. Curtis, Aaron M. Priester, Anthony J. Convertine, Forrest M. Kievit

Materials Science and Engineering Faculty Research & Creative Works

Following a traumatic brain injury (TBI), excess reactive oxygen species (ROS) and lipid peroxidation products (LPOx) are generated and lead to secondary injury beyond the primary insult. A major limitation of current treatments is poor target engagement, which has prevented success in clinical trials. Thus, nanoparticle-based treatments have received recent attention because of their ability to increase accumulation and retention in damaged brain. Theranostic neuroprotective copolymers (NPC3) containing thiol functional groups can neutralize ROS and LPOx. Immediate administration of NPC3 following injury in a controlled cortical impact (CCI) mouse model provides a therapeutic window in reducing ROS levels at 2.08–20.83 …


Additive Manufacturing Of (Mgconicuzn)O High-Entropy Oxide Using A 3d Extrusion Technique And Oxide Precursors, Ruoyu Chen, Saisai Li, Qingfeng Yan, Haiming Wen Jan 2023

Additive Manufacturing Of (Mgconicuzn)O High-Entropy Oxide Using A 3d Extrusion Technique And Oxide Precursors, Ruoyu Chen, Saisai Li, Qingfeng Yan, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

This report presents an additive manufacturing approach, for the first time, to producing high-entropy oxides (HEOs) using a 3D extrusion-based technique with oxide precursors. The precursors were prepared by a wet chemical method from sulfates. Additives were utilized to optimize the rheological properties of the printing inks with these precursors, and the properties of the printed HEOs were improved by increasing the solid content of the inks. When ink with a solid content of 78 wt% was used for printing, the resulting HEO exhibited a relative density of 92% and a high dielectric constant after undergoing pressure less sintering at …


Effect Of Mechanical Activation On Carbothermal Synthesis And Densification Of Zrc, Nina Obradović, Lun Feng, Suzana Filipović, Miljana Mirković, Darko Kosanović, Jelena Rogan, William Fahrenholtz Jan 2023

Effect Of Mechanical Activation On Carbothermal Synthesis And Densification Of Zrc, Nina Obradović, Lun Feng, Suzana Filipović, Miljana Mirković, Darko Kosanović, Jelena Rogan, William Fahrenholtz

Materials Science and Engineering Faculty Research & Creative Works

Zirconium carbide ceramics were prepared by carbothermal reduction of ZrO2 and C that were mixed by high-energy ball milling. Powders were milled for times from 0 to 120 min in air. As milling time increased, the surface area of the powders increased, indicating significant particle size reduction. Milled powders were reacted at 1600 °C and then densified by spark plasma sintering at 2000 °C, which was sufficient to convert the starting powders to zirconium carbide. Unmilled powders did not reach full density. Milled powders reached full density, but ZrO2 impurities were found for specimens prepared from powders milled …


Exposure To Pcb126 During The Nursing Period Reversibly Impacts Early-Life Glucose Tolerance, Brittany B. Rice, Keegan W. Sammons, Sara Y. Ngo Tenlep, Madeline T. Weltzer, Leryn J. Reynolds, Cetewayo S. Rashid, Hollie I. Swanson, Kevin J. Pearson Jan 2023

Exposure To Pcb126 During The Nursing Period Reversibly Impacts Early-Life Glucose Tolerance, Brittany B. Rice, Keegan W. Sammons, Sara Y. Ngo Tenlep, Madeline T. Weltzer, Leryn J. Reynolds, Cetewayo S. Rashid, Hollie I. Swanson, Kevin J. Pearson

Human Movement Sciences & Special Education Faculty Publications

Polychlorinated biphenyls (PCBs) are persistent environmental organic pollutants known to have detrimental health effects. Using a mouse model, we previously demonstrated that PCB126 exposure before and during pregnancy and throughout the perinatal period adversely affected offspring glucose tolerance and/or body composition profiles. The purpose of this study was to investigate the glucose tolerance and body composition of offspring born to dams exposed to PCB126 during the nursing period only. Female ICR mice were bred, and half of the dams were exposed to either vehicle (safflower oil) or 1 µmole PCB126 per kg of body weight via oral gavage on postnatal …


Thermal And Electrical Properties Of Spark Plasma Sintered (Ti,Cr)B2 Ceramics, Steven M. Smith, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Laura Silvestroni Jan 2023

Thermal And Electrical Properties Of Spark Plasma Sintered (Ti,Cr)B2 Ceramics, Steven M. Smith, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Laura Silvestroni

Mathematics and Statistics Faculty Research & Creative Works

Thermal and electrical properties were measured for TiB2 ceramics containing varying CrB2 contents up to 33 mol%. The room-temperature thermal diffusivity decreased with increasing Cr content from 0.330 ± 0.003 cm2/s for pure TiB2 to 0.060 ± 0.003 cm2/s for (Ti0.66Cr0.33)B2. The amount of anisotropy in the coefficients of thermal expansion increased with increasing Cr content and the c-axis had the greatest dependence on Cr addition, with an increase of more than 25% in the thermal expansion for 33 mol% CrB2 compared to TiB2, whereas the a-axis only increased by about 8%. The electrical conductivity was the lowest for (Ti0.66Cr0.33)B2 …


Effects Of Confinement On Ionic Liquids And Deep Eutectic Solvents For The Design Of Catalytic Systems, Electrochemical Devices, And Separations, Andrew Drake Jan 2023

Effects Of Confinement On Ionic Liquids And Deep Eutectic Solvents For The Design Of Catalytic Systems, Electrochemical Devices, And Separations, Andrew Drake

Theses and Dissertations--Chemical and Materials Engineering

Confinement of ionic liquids (ILs) and deep eutectic solvents (DESs) within mesoporous materials such as silica helps to control the local environment within the pores for applications such as catalysis, electrochemistry, and absorption. Silica thin films with 2.5 and 8 nm pores and micron-sized silica particles with pore diameters of 5.4 and 9 nm were synthesized to study the effect of nanoconfinement on ILs 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), and DESs reline and ethaline (choline chloride and urea or ethylene glycol). Silica thin films with vertically aligned, well ordered, and accessible pores were synthesized via the evaporation-induced …


An Updated Analytical Method For Predicting The Bracing Behavior Of Z-Purlin Supported Standing Seam Diaphragm Systems, Michael W. Seek Jan 2023

An Updated Analytical Method For Predicting The Bracing Behavior Of Z-Purlin Supported Standing Seam Diaphragm Systems, Michael W. Seek

Engineering Technology Faculty Publications

Roof systems utilizing Z-purlins as a secondary member supporting a standing seam panel system are used extensively by the metal building industry. The Z-purlins rely on the diaphragm action in the standing seam panel system to provide lateral support and transfer forces to anchorages. The behavior of the standing seam system is highly nonlinear making prediction of the interaction between the Z-purlin and the standing seam system difficult. To better understand the behavior of the interaction between the purlins and the panel system, a series of non-linear shell finite element models were developed based on the test results of simple …


Assessing A Byproduct Of The Cbd Ethanol Extraction Process For Potential As A Wood Finishing Product, Avani M. Flanagan Jan 2023

Assessing A Byproduct Of The Cbd Ethanol Extraction Process For Potential As A Wood Finishing Product, Avani M. Flanagan

Masters Theses

Developments in regulations concerning the use of CBD products as therapeutic remedies have allowed the global cannabidiol (CBD) market to take off within the past five years. Despite producers of CBD oil wanting to optimize their methods and increase product yields, several waste streams still exist. During the winterization phase of the ethanol extraction process, CBD oil is cooled and filtered so the fats, waxes, and lipids from the Cannabis sativa plant can coagulate and be removed, creating a purer oil with higher potency but contributing to the 58% (crude weight) total loss that occurs throughout the process. The removed …


System Analysis Of An Internal Combustion Engine (Ice) – Solid Oxide Fuel Cell (Sofc) Hybrid Cycle, Jose Javier Colon Rodriguez Jan 2023

System Analysis Of An Internal Combustion Engine (Ice) – Solid Oxide Fuel Cell (Sofc) Hybrid Cycle, Jose Javier Colon Rodriguez

Graduate Theses, Dissertations, and Problem Reports

Due to the intermittent nature of renewable energy and the rigid operation of existing coal plants, the need for flexible power generation technology is eminent. Hybrid energy systems have shown potential for flexible, grid following dynamics while maintaining higher efficiencies. The work below focuses on the performance analysis of a proposed 100 kW pressurized Internal Combustion Engine (ICE) and Solid Oxide Fuel Cell (SOFC) hybrid system. The un-utilized fuel from the SOFC stack provided the chemical energy to operate the engine. A turbocharger was used to deliver the necessary air flow for both the stack and engine. An external reformer …


Material Characterization Of Thermoplastic Polyurethane (Tpu) And Thermoplastic Elastomers (Tpe) For Development Of 3d-Printed Surrogate Organs For Medical Training, Anastasia Elizabeth Lucci Jan 2023

Material Characterization Of Thermoplastic Polyurethane (Tpu) And Thermoplastic Elastomers (Tpe) For Development Of 3d-Printed Surrogate Organs For Medical Training, Anastasia Elizabeth Lucci

Graduate Theses, Dissertations, and Problem Reports

Cadaveric specimens are a necessary, albeit limited, resource for training medical students on basic surgical skills. The availability of surrogate 3D-printed organs would readily allow access to resources that could reduce or potentially eliminate the need for cadaveric specimens or, at a minimum, provide students the opportunity to practice with 3D-printed surrogates before transitioning to those specimens. This research focuses on determining which thermoplastic material most closely mimics mechanical properties such as hardness and stiffness of human organs and allows 3D printing surrogate organs to be used as safe, educational tools. Relatively “soft” materials such as thermoplastic polyurethanes (TPU) and …


Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii Jan 2023

Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii

Graduate Theses, Dissertations, and Problem Reports

Alloy Inconel 718 is a Ni based superalloy used for high temperature applications including turbine blades, turbocharger rotors and nuclear reactors. Inconel 718 is a popular commercial atomized powder that has limitations in performance for use in additive manufacturing applications due to poor part quality and efficiency of current fabrication methods. Developing new compositions and additive manufacturing (AM) methodologies of IN718 is critical to improve the quality and the efficiency of IN718 parts manufacturing. Developing new additive manufacturing methodology that produces higher quality parts made of IN718 as compared to current methods has the potential to greatly impact industry, academia, …


Multimaterial, Core-Shell Direct Ink Writing Of Flexible Strain Sensors For Pneumatically-Actuated Soft Robotic Hinge Joints, John Michael Burke Jan 2023

Multimaterial, Core-Shell Direct Ink Writing Of Flexible Strain Sensors For Pneumatically-Actuated Soft Robotic Hinge Joints, John Michael Burke

Graduate Theses, Dissertations, and Problem Reports

Direct ink writing (DIW) provides for an expansive material library and the ability to print multiple materials with tailored functionalities in a controllable and single-step process. Particularly beneficial is the net shape printing under ambient conditions of a wide range of materials normally incompatible with one another. Coaxial DIW is a 3D printing technique that allows for two dissimilar inks to be extruded simultaneously in a co-flow manner. In this work, custom-designed coaxial nozzles were 3D-printed using a stereolithography printer. Composite inks comprised of thermoplastic polyurethane and silver were developed and studied. The coaxial nozzles were then used to co-extrude …


Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown Jan 2023

Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown

Graduate Theses, Dissertations, and Problem Reports

Ammonia is critical to supporting human life on earth because of its use as fertilizer. The Haber-Bosch process to produce ammonia has been practiced for over 100 years. This process operates at high pressure and temperature to overcome the thermodynamic and kinetic limitations of the ammonia synthesis reaction thus researchers have tried to overcome it for decades. At present this process represents 1% of global energy usage and 2.5% of global CO2 emissions. The proposed chemical looping ammonia synthesis approach seeks to reduce the environmental impact of this critical process and to elucidate microwave-catalytic principles.

This research aims to …


Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan Jan 2023

Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan

MSU Graduate Theses

The interatomic potentials designed for binary/high entropy diborides and ultra-high temperature composites (UHTC) have been developed through the implementation of deep neural network (DNN) algorithms. These algorithms employed two different approaches and corresponding codes; 1) strictly local & invariant scalar-based descriptors as implemented in the DEEPMD code and 2) equivariant tensor-based descriptors as included in the ALLEGRO code. The samples for training and validation sets of the forces, energy, and virial data were obtained from the ab-initio molecular dynamics (AIMD) simulations and Density Functional Theory (DFT) calculations, including the simulation data from the ultra-high temperature region (> 2000K). The study …


Design And Fabrication Of A High-Performance Heat Exchanger Using An Optimized Three-Dimensional Surface Structure Through Additive Manufacturing, Seth T. Waters Jan 2023

Design And Fabrication Of A High-Performance Heat Exchanger Using An Optimized Three-Dimensional Surface Structure Through Additive Manufacturing, Seth T. Waters

Electronic Theses and Dissertations

A heat exchanger is a device used to transfer thermal energy between two intertwining fluid pathways. In this study, the design of a novel heat exchanger is proposed using functional gradient double gyroid structure. The complex internal geometries of the gyroid structure significantly increases the surface area to volume ratio, and potentially could expressively improve efficiency of the heat transfer. The proposed idea provides a new approach for the design of a high-efficiency heat exchanger. In order to fabricate the complex structured heat exchanger system additive manufacturing is adapted instead of traditionally subtractive manufacturing techniques or casting. The prototypes of …


An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez Jan 2023

An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez

Electronic Theses and Dissertations

Additive manufacturing technologies have been enhanced throughout the years yet have surprised the manufacturing industry due to their high-end surface finish and dimensional accuracy. Different experiments have been done to identify a specific phenomenon known in the vat-polymerization field. Distortion and dimensional inaccuracy tend to affect the overall properties of the process, either physical or chemical. This approach allows the understanding of how the physical properties have been affected and how to study the chemical properties to avoid this type of phenomenon. The chemical reaction between polymer and UV light has been studied and experimented with to the point that …


Machine Learning Strategies For Potential Development In High-Entropy Driven Nickel-Based Superalloys, Marium Mostafiz Mou Jan 2023

Machine Learning Strategies For Potential Development In High-Entropy Driven Nickel-Based Superalloys, Marium Mostafiz Mou

MSU Graduate Theses

In this study, I developed Deep Learning interatomic potentials to model a multi-phase and multi-component system of Ni-based Superalloys. The system has up to three major phase constituents, namely Gamma, Gamma Prime, and Transition-metal rich Carbide. I utilized invariant scalar-based and/or equivariant, tensor-based neural network (NN) approach as implemented in DEEPMD, NEQUIP/ALLEGRO codes, respectively, and Moment Tensor Potential (MTP). For the training and validation sets, I employed the ab-initio molecular dynamics (AIMD) trajectory results and ground state DFT calculations, including the energy, force, and virial database from highly diverse compositions, temperatures, and pressures following a “High Entropy Strategy.” The Deep …