Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris Oct 2023

The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris

Mechanical & Aerospace Engineering Theses & Dissertations

Post-cure through thickness reinforcement is a method used to increase the mechanical properties of composite laminates in the transverse direction. This study conducted a test on skin-stringer structures bonded together in three configurations using an epoxy or thermoplastic adhesive at the interface with reinforcing pins inserted through the laminate thickness located at the edge of the stringer at differing angles between -30º and 30º. The fabrication of these samples in configurations B and C consisted of the use of carbon fiber prepeg laminate at a ply orientation of [02902]2s for the skin and [0 90] …


Fabrication Of Smooth Sac305 Thin Films Via Magnetron Sputtering And Evaluations Of Microstructure, Creep, And Electrical Resistivity, Manish Ojha Oct 2023

Fabrication Of Smooth Sac305 Thin Films Via Magnetron Sputtering And Evaluations Of Microstructure, Creep, And Electrical Resistivity, Manish Ojha

Mechanical & Aerospace Engineering Theses & Dissertations

SAC305 (96.5%Sn-3%Ag-0.5%Cu) is the leading alternative to the traditional Sn-Pb solder eutectic alloy owing to its low melting temperature, better compatibility with other components, and excellent mechanical/structural properties. In the realm of modern electronics, where devices are increasingly miniaturized, the design and characterization of thin solder joints become paramount. The orientation and size of the grains within the solder can influence its ability to withstand mechanical stresses. However, research on SAC thin films remains sparse, and these films present unique challenges and characteristics compared to their bulk counterparts, influenced by factors like interfaces, stresses, thickness, microstructure, and the nature of …


Chemical And Physical Interaction Mechanisms And Multifunctional Properties Of Plant Based Graphene In Carbon Fiber Epoxy Composites, Daniel W. Mulqueen Aug 2023

Chemical And Physical Interaction Mechanisms And Multifunctional Properties Of Plant Based Graphene In Carbon Fiber Epoxy Composites, Daniel W. Mulqueen

Mechanical & Aerospace Engineering Theses & Dissertations

Graphene has generated substantial interest as a filler due to its exceptional strength, flexibility, and conductivity but faces obstacles in supply and implementation. A renewable, plant-based graphene nanoparticle (pGNP) presents a more accessible and sustainable filler with the same properties as mineral graphenes. In this study, the mechanisms of graphene reinforcement in carbon fiber reinforced plastic (CFRP) were examined, along with the resulting improvements to mechanical strength, resistance to crack propagation, electrical and thermal conductivity at elevated temperatures. pGNP, produced from renewable biomass, was shown to have a graphitic structure with flakes 3-10 layers thick and a median lateral size …


Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne May 2023

Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne

Physics Theses & Dissertations

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently high purity niobium is the material of choice for SRF cavities which have been optimized to operate near their theoretical field limits. This brings about the need for significant R&D efforts to develop next generation superconducting materials which could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under high RF magnetic field without penetration of quantized …


Nb3Sn Coating Of Twin Axis Cavity And Other Complex Srf Cavity Structures, Jayendrika Kumari Tiskumara May 2023

Nb3Sn Coating Of Twin Axis Cavity And Other Complex Srf Cavity Structures, Jayendrika Kumari Tiskumara

Physics Theses & Dissertations

In the field of Accelerator Science, for the low cost and increased quality factor, thin films coated niobium cavities are used in the modern SRF research. Within the potential substances, Nb3Sn has shown higher critical temperature than niobium. Here the tin vapor diffusion method is used as the preferred technique to coat niobium cavities. So far, only elliptical cavities have been coated with Nb3Sn and this technique has not yet been applied to cavities with complex geometries, which are also helpful in the accelerator science field. The Half-wave resonator could provide us data across frequencies of …


Architecture Of Heptagonal Metallo-Macrocycles Via Embedding Metal Nodes Into Its Rigid Backbone, A.M.Shashika D. Wijerathna, He Zhao, Qiangqiang Dong, Qixia Bai, Zhiyuan Jiang, Jie Yuan, Jun Wang, Mingzhao Chen, Markus Zirnheld, Rockwell T. Li, Yuan Zhang, Yiming Li, Pingshan Wang Jan 2023

Architecture Of Heptagonal Metallo-Macrocycles Via Embedding Metal Nodes Into Its Rigid Backbone, A.M.Shashika D. Wijerathna, He Zhao, Qiangqiang Dong, Qixia Bai, Zhiyuan Jiang, Jie Yuan, Jun Wang, Mingzhao Chen, Markus Zirnheld, Rockwell T. Li, Yuan Zhang, Yiming Li, Pingshan Wang

College of Sciences Posters

Metal-organic macrocycles have received increasing attention not only due to their versatile applications such as molecular recognition, compounds encapsulation, anti-bacteria and others, but also for their important role in the study of structure-property relationship at nano scale. However, most of the constructions utilize benzene ring as the backbone, which restricts the ligand arm angle in the range of 60, 120 and 180 degrees. Thus, the topologies of most metallo-macrocycles are limited as triangles and hexagons, and explorations of using other backbones with large angles and the construction of metallo-macrocycles with more than six edges are very rare.

In this study, …


Effect Of Platelet Length And Stochastic Morphology On Flexural Behavior Of Prepreg Platelet Molded Composites, Siavash Sattar, Benjamin Beltran Laredo, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2023

Effect Of Platelet Length And Stochastic Morphology On Flexural Behavior Of Prepreg Platelet Molded Composites, Siavash Sattar, Benjamin Beltran Laredo, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Prepreg platelet molding compound (PPMC) can be used to create structural grade material with a heterogeneous mesoscale morphology. The present work considered various platelet lengths of the prepreg system IM7/8552 to study the effect of platelet length on the flexural behavior of PPMC composite. A progressive failure finite-element analysis was used to understand competing failure modes in PPMC with the different platelet length. The interlaminar and in-plane damage mechanisms were employed to describe complex failure modes within the mesostructure of PPMCs. Experimental results of the flexural tests of the PPMC with different platelet length sizes were used to validate the …


Elastic Properties Of The Non-Mixing Copper Donor Assisted Material In Friction Stir Welding Of Aluminum Alloys Using Nanoindentation, M. Ojha, A. H. Al-Allaq, Y. S. Mohammed, S. N. Bhukya, Z. Wu, A. A. Elmustafa Jan 2023

Elastic Properties Of The Non-Mixing Copper Donor Assisted Material In Friction Stir Welding Of Aluminum Alloys Using Nanoindentation, M. Ojha, A. H. Al-Allaq, Y. S. Mohammed, S. N. Bhukya, Z. Wu, A. A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

Friction stir welding of high-strength materials such as steels is the impeded by the lack of the vast heat input needed to start the process. Contact friction is considered the most dominant source of heat generation for FSW steels which tends to cause severe wear conditions of the tool hear. To relieve the extreme wear conditions that occur on the tool heads because of FSW steels, we introduce the non-mixing Cu donor stir material to friction stir welding of aluminum alloys. The elastic properties of the Cu donor assisted friction stir welded aluminum alloys are measured using nanoindentation. The hardness …


Cold-Formed Steel Strength Predictions For Combined Bending And Torsion, Yu Xia, Robert S. Glauz, Benjamin W. Schafer, Michael Seek, Hannah B. Blum Jan 2023

Cold-Formed Steel Strength Predictions For Combined Bending And Torsion, Yu Xia, Robert S. Glauz, Benjamin W. Schafer, Michael Seek, Hannah B. Blum

Engineering Technology Faculty Publications

Locally slender cross-section members, such as cold-formed steel Cee and Zee sections, are susceptible to significant twisting and high warping torsion stresses. Torsion considerations are complicated by whether it is derived as a first-order effect from loading or a second-order effect from instability. The current design for combined bending and torsion interaction has some limitations, including only considering the first yield in torsion and ignoring the cross-section slenderness in torsion. Previous work has derived a simple uniform equation to predict the bimoment capacity and two bimoment strength curves for local and distortional buckling under torsion only. This work is extended …


Higher-Order Effects In Biaxial Flexure Of Gfrp I-Section Beams, Zia Razzaq, Faridoon Z. Razzaq Jan 2023

Higher-Order Effects In Biaxial Flexure Of Gfrp I-Section Beams, Zia Razzaq, Faridoon Z. Razzaq

Civil & Environmental Engineering Faculty Publications

A theoretical study of Glass Fiber Reinforced Polymer (GFRP) beams subjected to biaxial bending moments is presented with a focus on the influence of higher-order effects on maximum normal stresses. It is shown that the biaxial bending type of loading causes a dramatic increase in the maximum normal stress for a GFRP beam when induced torsional effects are included. The study demonstrates that the traditional first-order theory can grossly underestimate the maximum normal stress in a GFRP beam. Based on the numerical results presented using a higher-order theory which also accounts for induced warping normal stresses, the maximum normal stress …


Elastoplastic Quasi-Static And Impact Load Response Of Steel Structure Sub-Assemblage With Cfrp Strips, Ali Al Aloosi, Zia Razzaq Jan 2023

Elastoplastic Quasi-Static And Impact Load Response Of Steel Structure Sub-Assemblage With Cfrp Strips, Ali Al Aloosi, Zia Razzaq

Civil & Environmental Engineering Faculty Publications

Presented in this paper is the outcome of an experimental investigation of the elastoplastic quasi-static and impact load response of a steel sub-assemblage constructed using a pair of hollow square section members with or without Carbon Fiber Reinforced Polymer (CFRP) strips. The sub-assemblage consists of a long structural member welded to a short member, thus representing a typical combination of a column and a beam on the face of a multi-story steel building frame. The column is subjected to a lateral quasi-static or impact load. Tests are conducted on four separate steel sub-assemblages. The first two tests are conducted with …


Exposure To Pcb126 During The Nursing Period Reversibly Impacts Early-Life Glucose Tolerance, Brittany B. Rice, Keegan W. Sammons, Sara Y. Ngo Tenlep, Madeline T. Weltzer, Leryn J. Reynolds, Cetewayo S. Rashid, Hollie I. Swanson, Kevin J. Pearson Jan 2023

Exposure To Pcb126 During The Nursing Period Reversibly Impacts Early-Life Glucose Tolerance, Brittany B. Rice, Keegan W. Sammons, Sara Y. Ngo Tenlep, Madeline T. Weltzer, Leryn J. Reynolds, Cetewayo S. Rashid, Hollie I. Swanson, Kevin J. Pearson

Human Movement Sciences & Special Education Faculty Publications

Polychlorinated biphenyls (PCBs) are persistent environmental organic pollutants known to have detrimental health effects. Using a mouse model, we previously demonstrated that PCB126 exposure before and during pregnancy and throughout the perinatal period adversely affected offspring glucose tolerance and/or body composition profiles. The purpose of this study was to investigate the glucose tolerance and body composition of offspring born to dams exposed to PCB126 during the nursing period only. Female ICR mice were bred, and half of the dams were exposed to either vehicle (safflower oil) or 1 µmole PCB126 per kg of body weight via oral gavage on postnatal …


An Updated Analytical Method For Predicting The Bracing Behavior Of Z-Purlin Supported Standing Seam Diaphragm Systems, Michael W. Seek Jan 2023

An Updated Analytical Method For Predicting The Bracing Behavior Of Z-Purlin Supported Standing Seam Diaphragm Systems, Michael W. Seek

Engineering Technology Faculty Publications

Roof systems utilizing Z-purlins as a secondary member supporting a standing seam panel system are used extensively by the metal building industry. The Z-purlins rely on the diaphragm action in the standing seam panel system to provide lateral support and transfer forces to anchorages. The behavior of the standing seam system is highly nonlinear making prediction of the interaction between the Z-purlin and the standing seam system difficult. To better understand the behavior of the interaction between the purlins and the panel system, a series of non-linear shell finite element models were developed based on the test results of simple …