Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …


Surface Properties, Work Function, And Thermionic Electron Emission Characterization Of Materials For Next-Generation Dispenser Cathodes, Antonio Mantica Jan 2023

Surface Properties, Work Function, And Thermionic Electron Emission Characterization Of Materials For Next-Generation Dispenser Cathodes, Antonio Mantica

Theses and Dissertations--Chemical and Materials Engineering

A dispenser cathode’s ability to thermionically emit electrons is highly dependent on its material properties, especially those of the surface. Understanding the relationship between surface properties and electron emission, therefore, is vital to reach the next generation of the many vacuum electron devices (VEDs) that rely on the physics of electron emission. In the past century, many techniques have been developed to characterize material surfaces and quantify thermionic emission. These techniques are based on a wide range of different physical phenomena, including measuring photoemission via the photoelectric effect, measuring the electrostatic potential between metals in electrical contact, and current collection …


Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai Jan 2023

Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai

Theses and Dissertations--Chemical and Materials Engineering

Soft, slippery surfaces have gained increasing attention due to their wide range of potential applications, for example in self-cleaning, anti-fouling, liquid collection, and more. One design approach in creating slippery surfaces is using a swollen elastomer, which is a polymer network swollen with a lubricant. This type of surface may be beneficial for longer-term use than standard lubricant-infused surfaces, and provides a versatile surface with tunable mechanical properties. Hence, understanding the physics of soft surface interactions is important for fundamental soft matter physics, biomaterials, adhesives, and coatings. This research experimentally investigates wetting on soft infused networks, with the aim of …


Advanced Microstructural Characterization Of Functionally Graded Dental Ceramic Material For Materials-Informed Finishing, Angani Vigneswaran Jan 2023

Advanced Microstructural Characterization Of Functionally Graded Dental Ceramic Material For Materials-Informed Finishing, Angani Vigneswaran

Theses and Dissertations--Manufacturing Systems Engineering

Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has gained popularity as the choice of material for dental prosthetics. Ivoclar Vivadent’s IPS e.max ZirCAD Prime dental ceramic incorporates a unique gradient technology that varies the yttria content over the thickness of the material. The top layer is composed of 5Y-TZP which is desired for its optical properties while the bottom layer is composed of a much stronger 3Y-TZP. In between the two layers, 5Y-TZP and 3Y-TZP are mixed to form a transition layer. Varying the amount of yttria allows for more esthetically pleasing translucency in the visible areas of the restoration without compromising …


Effects Of Confinement On Ionic Liquids And Deep Eutectic Solvents For The Design Of Catalytic Systems, Electrochemical Devices, And Separations, Andrew Drake Jan 2023

Effects Of Confinement On Ionic Liquids And Deep Eutectic Solvents For The Design Of Catalytic Systems, Electrochemical Devices, And Separations, Andrew Drake

Theses and Dissertations--Chemical and Materials Engineering

Confinement of ionic liquids (ILs) and deep eutectic solvents (DESs) within mesoporous materials such as silica helps to control the local environment within the pores for applications such as catalysis, electrochemistry, and absorption. Silica thin films with 2.5 and 8 nm pores and micron-sized silica particles with pore diameters of 5.4 and 9 nm were synthesized to study the effect of nanoconfinement on ILs 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), and DESs reline and ethaline (choline chloride and urea or ethylene glycol). Silica thin films with vertically aligned, well ordered, and accessible pores were synthesized via the evaporation-induced …