Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

2023

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 547

Full-Text Articles in Engineering

The Effect Of Fine Recycled Concrete Aggregates On The Mechanical And Durability Properties Of Concrete, Abbas Chour, Jamal Khatib Dec 2023

The Effect Of Fine Recycled Concrete Aggregates On The Mechanical And Durability Properties Of Concrete, Abbas Chour, Jamal Khatib

BAU Journal - Science and Technology

The fast increase of construction and demolition (C&D) operations has resulted in the creation of massive amounts of garbage, which must be cleared. Reusing C&D waste is of significant importance for environmental conservation and resource utilization. One such alternative for structural concrete is recycled concrete aggregate obtained from building and demolition debris. In this context, the present study aims to comprehensively review the current state of the art in fine recycled concrete materials (fRCA), including their physical properties, technological advantages, mechanical properties, and durability characteristics. The study establishes a paradigm for evaluating the quality of fRCA, whether created in a …


Application Of Quantum Algorithms In The Synthesis Of Dynamic Objects, Noilakhon Yakubova Dec 2023

Application Of Quantum Algorithms In The Synthesis Of Dynamic Objects, Noilakhon Yakubova

Chemical Technology, Control and Management

Around the world, the food industry is focusing on achieving energy and resource efficiency. One of the main challenges in the field of process automation is the creation of effective control systems using intelligent technologies to improve the quality of processes and achieve the production of high-quality products with less energy and resources. Therefore, it is necessary to work with a large amount of data. Particular attention is paid to the development of computational algorithms for automated high-speed computational analysis systems for processing this data at high speed. Therefore, the article discusses the use of quantum computing methods in controlling …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan Dec 2023

Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan

Journal of Electrochemistry

Modification of electrode is vitally important for achieving high energy efficiency in aqueous quinone-based redox flow batteries (AQRFBs). The modification of graphite felt (GF) was carried out by means of urea hydrothermal reaction, and simultaneously, the effects of hydrothermal reaction time on the functional groups and surface structure of nitrogen-doped graphite felt were studied. The surface morphology and defect, element content and surface chemical state of the modified electrode were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) test, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the modified electrodes was evaluated by cyclic voltammetry, electrochemical impedance …


An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao Dec 2023

An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao

Journal of Electrochemistry

The solid-electrolyte interphase (SEI) plays a key role in anodes for rechargeable lithium-based battery technologies. However, a thorough understanding in the mechanisms of SEI formation and evolution remains a major challenge, hindering the rapid development and wide applications of Li-based batteries. Here, we devise a borrowing surface-enhanced Raman scattering (SERS) activity strategy by utilizing a size optimized Ag nanosubstrate to in-situ monitor the formation and evolution of SEI, as well as its structure and chemistry in an ethylene carbonate-based electrolyte. To ensure a reliable in-situ SERS investigation, we designed a strict air-tight Raman cell with a three-electrode configuration. Based on …


Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr Dec 2023

Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr

Journal of Electrochemistry

Solid oxide electrolysis cell (SOEC) is an efficient and clean energy conversion technology that can utilize electricity obtained from renewable resources, such as solar, wind, and geothermal energy to electrolyze water and produce hydrogen. The conversion of abundant intermittent energy to hydrogen energy would facilitate the efficient utilization of energy resources. SOEC is an all-ceramic electrochemical cell that operates in the intermediate to high temperature range of 500–750 ℃. Compared with traditional low temperature electrolysis technology (e.g., alkaline or proton exchange membrane cells operating at ~100 ℃), the high-temperature SOEC can increase the electrolysis efficiency from 80% to ~100%, providing …


Isolation And Characterization Of Caffeine-Degrading Bacteria From Coffee Plantation Areas In Malaysia, Elvina Clarie Dullah, Mohd Fazli Farida Asras Dec 2023

Isolation And Characterization Of Caffeine-Degrading Bacteria From Coffee Plantation Areas In Malaysia, Elvina Clarie Dullah, Mohd Fazli Farida Asras

Makara Journal of Technology

Decaffeination by microbial degradation is currently the most optimal and low-cost approach, involving only microbial cells and/or their enzymes. The bacterium was characterized using a series of biochemical tests. Positive results were obtained from carbohydrate fermentation, citrate utilization, and catalase tests, while negative results were obtained from Voges-Proskauer (VP) and indole tests. Three different caffeine concentrations of 0.25%, 0.4%, and 2% were tested and measured through Gas Chromatography-Mass Spectrophotometry (GC-MS) analysis. The highest caffeine reduction (89.25%) was found when 0.25% caffeine was used in the media. Only a small amount of caffeine was reduced to 0.4% and 2%, with 34.78% …


Optimization Of The Building Envelope And Roof Shading To Reduce The Energy Consumption Of College Low-Rise Buildings In Indonesia, Nasruddin Nasruddin, Azimil Gani Alam, Mohammad Imroz Sohel Dec 2023

Optimization Of The Building Envelope And Roof Shading To Reduce The Energy Consumption Of College Low-Rise Buildings In Indonesia, Nasruddin Nasruddin, Azimil Gani Alam, Mohammad Imroz Sohel

Makara Journal of Technology

Energy consumption in buildings is a crucial concern globally, prompting researchers to explore innovative solutions to mitigate its impact. This study investigates the optimization of building envelopes and roof shading systems of existing buildings in Indonesia to realize notable energy savings. Multiple scenarios were explored, with modifications to building envelopes and roof shading, highlighting the overall thermal transfer value as a key parameter. Using EnergyPlus simulations, the efficacy of natural ventilation in corridors and roof shading modifications was assessed in reducing energy consumption. The findings revealed that renovating existing buildings by optimization of the building envelope and roof shading by …


Combined Risk Based Inspection And Fault Tree Analysis For Repetitive 3-Phase Line Piping Leakage At West Java Offshore Topside Facility, Dona Yuliati, Akhmad Herman Yuwono, Datu Rizal Asral, Donanta Dhaneswara Dec 2023

Combined Risk Based Inspection And Fault Tree Analysis For Repetitive 3-Phase Line Piping Leakage At West Java Offshore Topside Facility, Dona Yuliati, Akhmad Herman Yuwono, Datu Rizal Asral, Donanta Dhaneswara

Journal of Materials Exploration and Findings

Hydrocarbon releases might result in serious consequences in various aspects. In addition to the contribution to environmental pollution, repetitive leakages need high repair costs. This study aim is to minimize potential repetitive leakage for other typical 3-phase piping systems. We conducted the risk assessment by adopting Risk Based Inspection (RBI) API 581 to identify risk level, calculating piping lifetime, recommended inspection plan and mitigations. The most relevant root causes can be obtained through quantitative Fault Tree Analysis (FTA). Observation and investigation was taken from eight 3-phase piping systems that experienced repetitive leakages. It has been found that the risk level …


The Effect Of Parameters In Cryogenic Treatment On Mechanical Properties Of Tool Steel: A Review, Ronaldus Caesariano Ekaputra, Myrna Ariati Mochtar Dec 2023

The Effect Of Parameters In Cryogenic Treatment On Mechanical Properties Of Tool Steel: A Review, Ronaldus Caesariano Ekaputra, Myrna Ariati Mochtar

Journal of Materials Exploration and Findings

Tool steel is classified as special alloy steel which proposed as dies or mold materials as their high mechanical properties and dimensional stability. In order to improve tool steel’s mechanical properties, heat treatment process, especially, cryogenic treatment is conducted. Cryogenic treatment is done by exposing tool steel material at sub-zero liquid/gas media after heated at austenite temperature. This process significantly affects the martensite phase transformation increase and avoids retained austenite emersion. In particular, the higher martensite volume fraction, the higher hardness and wear resistance value of tool steel. It had been proven that adjusting critical process parameters of cryogenic treatment …


Characteristics Of Sodium Lithium Titanate Synthesized At Different Solid-State Reaction Temperature For Lithium-Ion Battery Anode, Ilham Nur Dimas Yahya, Nofrijon Sofyan, Deni Shidqi Khaerudini, Gerald Ensang Timuda, Slamet Priyono Dec 2023

Characteristics Of Sodium Lithium Titanate Synthesized At Different Solid-State Reaction Temperature For Lithium-Ion Battery Anode, Ilham Nur Dimas Yahya, Nofrijon Sofyan, Deni Shidqi Khaerudini, Gerald Ensang Timuda, Slamet Priyono

Journal of Materials Exploration and Findings

The effect of sintering temperature on the characteristics of sodium lithium titanate (NaLiTi3O7/NaLTO) synthesized at different solid-state reaction temperature and its performance as lithium-ion battery anode has been investigated. The precursors for the synthesis consisted of LiOH.H2O, TiO2, and NaHCO3. The synthesis was performed via solid-state reaction method. The precursors were mixed and sintered at variation temperatures of 900oC, 1000oC, and 1100oC for 2 hours under atmosphere condition. The final product was characterized using X-ray diffraction (XRD) and particle size analyzer (PSA). The XRD …


Nitrogen Gas Quenching Pressure Effect On Bs S155 Alloy Steel In Vacuum Furnace, Agus Mulyadi Hasanudin, Eddy Sumarno Siradj Dec 2023

Nitrogen Gas Quenching Pressure Effect On Bs S155 Alloy Steel In Vacuum Furnace, Agus Mulyadi Hasanudin, Eddy Sumarno Siradj

Journal of Materials Exploration and Findings

The production of metal and alloy products requires the use of heat treatment, when during the heat treatment process, quenching is a crucial step. The quenching medium can be anything from water, a salt bath, oil, air and gas. In a vacuum furnace, pressurized gas, most frequently nitrogen (N2) gas, serves as one of the quenching mediums. One of the drawbacks of the quenching process is the distortion and dimensional change of the parts. This paper aims to investigate the influence of nitrogen gas quenching pressure on the distortion and dimensional change of aerospace actuator gear planet parts …


Pipeline Risk Analysis Optimization With Monte Carlo Method Using Gamma Distribution, Farhan Rama Digita, Jaka Fajar Fatriansyah, Abdul Rahim Ridzuan, Hanna Ovelia, Imam Abdillah Mas'ud, Irma Hartia Tihara, Baiq Diffa Pakarti Linuwih Dec 2023

Pipeline Risk Analysis Optimization With Monte Carlo Method Using Gamma Distribution, Farhan Rama Digita, Jaka Fajar Fatriansyah, Abdul Rahim Ridzuan, Hanna Ovelia, Imam Abdillah Mas'ud, Irma Hartia Tihara, Baiq Diffa Pakarti Linuwih

Journal of Materials Exploration and Findings

The inspection process of piping components in the oil and gas industry is one of the most crucial things, given the high risk posed by pipeline system failures, which have a huge impact on losses, both from environmental and financial aspects. Risk-based inspection with the Monte Carlo method is one of the efforts that can be made to minimize failures in piping systems, by involving data distribution to calculate the probability of component failure. Although the normal distribution is commonly used for generating random variables, its use in corrosion rate calculation can lead to overestimation due to negative corrosion rate …


The Influence Of Boron (B), Tin (Sn), Copper (Cu), And Manganese (Mn) On The Microstructure Of Spheroidal Graphite Irons, A. V. Bugten, P. Sanders, C. Hartung, R. Logan, M. Di Sabatino, L. Michels Dec 2023

The Influence Of Boron (B), Tin (Sn), Copper (Cu), And Manganese (Mn) On The Microstructure Of Spheroidal Graphite Irons, A. V. Bugten, P. Sanders, C. Hartung, R. Logan, M. Di Sabatino, L. Michels

Michigan Tech Publications, Part 2

Most spheroidal graphite irons (SGIs) have a matrix consisting of ferrite, pearlite, or a mix of the two. To achieve the desired matrix composition, pearlite promoters such as Mn, Cu, or Sn, are added to the molten metal. Among these elements, Sn is the most potent pearlite promoter. However, each has a different impact on the solidification, graphite precipitation, eutectoid transformation, and ultimately the final structure of the material. Research has shown that B promotes ferrite in fully pearlitic grades where Cu and Mn were used to promote pearlite. The present work investigates the effect of B in SGI with …


Modeling Of Asphalt Concrete For Cross-Anisotropic Visco-Elasticity And Heterogeneity, Zafrul Hakim Khan Dec 2023

Modeling Of Asphalt Concrete For Cross-Anisotropic Visco-Elasticity And Heterogeneity, Zafrul Hakim Khan

Civil Engineering ETDs

Asphalt Concrete (AC) is a cross-anisotropic viscoelastic material. This study has developed a methodology to backcalculate the cross-anisotropic properties of the AC layer from the Falling Weight Deflectometer (FWD) sensor and pavement response data from embedded sensors inside a pavement section. This study has also developed a two-way coupled Multiscale Finite Element Model (MsFEM) with Phase Field Fracture (PFF) to study the microstructural heterogeneity and damage of the AC layer based on the actual field loadings. A Finite Difference Time Domain (FDTD) and Machine learning-based backcalculation algorithm were developed to determine the layer thickness and dielectric constant from air-coupled Ground …


Physical Properties Of Copper Niobium Nanolamellar Composites Fabricated By Accumulative Roll Bonding, Jared Justice Dec 2023

Physical Properties Of Copper Niobium Nanolamellar Composites Fabricated By Accumulative Roll Bonding, Jared Justice

Nuclear Engineering ETDs

Nanolamellar composites with high interface density have increased strength due to interfaces serving as barriers to dislocation movement and high radiation damage resistance. However, these interfaces also serve as barriers to electron motion, reducing the electrical resistivity and thermal conductivity. This work seeks to understand the inherent tradeoff between strength and physical properties of nanolamellar composites produced by accumulative roll bonding with layer thickness ranging from 25 nm to 193 nm. The electrical resistivity was investigated over temperatures ranging from 2 K to 300 K. The effect of longitudinal rolling and cross rolling was also investigated. Electrical resistivity results were …


Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler Dec 2023

Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler

Mechanical Engineering ETDs

This study presents a flexible sensor/harvester device to be used in both electromagnetic sensing and energy harvesting applications for smart grids. When a current passes through a wire, the sensor detects the magnetic field created by that current. The sensor magnet interacts with the wire magnetic field resulting in a transfer of energy through the piezoelectric cantilever. Piezoelectric, conductive, magnetic, and magnetostrictive composite thin films were prepared to fabricate this device.

Initially, the magnet of the cantilever was optimized considering its shape, thickness, length, taper angle etc. via both simulations and experiments. Peak to peak voltage versus cantilever position graph …


Analysis Of Loading Rate, Fiber Orientation And Material Composition Through Image Processing And Digital Volume Correlation In High Performance Concrete, Aidan R. Carlson Dec 2023

Analysis Of Loading Rate, Fiber Orientation And Material Composition Through Image Processing And Digital Volume Correlation In High Performance Concrete, Aidan R. Carlson

Electronic Theses and Dissertations

Ultra High Performance Concrete (UHPC) and High Performance concrete (HPC) is characterized by high compressive strength and high toughness. This is achieved through maximizing the particle packing density in the matrix and the use of fibers to reinforce the matrix, increasing the materials toughness. The interactions of fibers and the matrix during loading is quite complex and involves several different energy dissipation mechanisms. The goal of this work and this thesis is to investigate these interactions and identify any changes in material response, and hope that these changes may be useful for the design of UHPC moving forward.

In this …


Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman Dec 2023

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman

Electronic Theses and Dissertations

The use of metal-oxide nanoparticles adsorbents is limited to fixed-bed columns in industrial-scale water treatment applications. This limitation is commonly attributed to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials, or a lack of adsorption capacity. Foams and aerogels derived from cellulose nanomaterials have unique characteristics, such as high porosity and low density, which enables their use in a variety of environmental applications, including water treatment. However, the overall use of cellulose nanomaterial-based foams in various environmental sectors is limited due to the high cost of production associated with time- and …


Floating Wind Farm Experiments Through Scaling For Wake Characterization, Power Extraction, And Turbine Dynamics, Juliaan Bossuyt, OndˇRej FercˇÁk, Zein Sadek, Charles Meneveau, Dennice Gayme, Raúl Bayoán Cal Dec 2023

Floating Wind Farm Experiments Through Scaling For Wake Characterization, Power Extraction, And Turbine Dynamics, Juliaan Bossuyt, OndˇRej FercˇÁk, Zein Sadek, Charles Meneveau, Dennice Gayme, Raúl Bayoán Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

In this study, wind and water tunnel experiments of turbulent wakes in a scaled floating wind farm are performed. Scaling of a floating wind farm with a scaling ratio of 1:400 is made possible by relaxing geometric scaling of the turbine platform system, such that the dynamic response can be correctly matched, and to allow for relaxing Froude scaling such that the Reynolds number can be kept large enough. Four dimensionless parameters, describing the relative importance of wind and wave loads compared to turbine inertia, are used to guide the scaled floater design. Free decay tests of the pitch and …


A Review On Ship Recycling Industry In Bangladesh From Global Perspective, Ahammad Abdullah, Zobair Ibn Awal, M Ziauddin Alamgir, Md. Jobayer Mia, Farihatul Mim, Utpal K. Dhar Dec 2023

A Review On Ship Recycling Industry In Bangladesh From Global Perspective, Ahammad Abdullah, Zobair Ibn Awal, M Ziauddin Alamgir, Md. Jobayer Mia, Farihatul Mim, Utpal K. Dhar

Journal of Ocean and Coastal Economics

At present, the global center of the ship breaking and recycling industry is in South Asia, specifically Bangladesh, India, and Pakistan. These three countries account for 70–80 percent of the international recycling market for ocean-going vessels, with China and Turkey covering most of the remaining market. Only about 5 percent of global volume is scrapped outside these five countries. Bangladesh has environmentally beneficial coastal region and affordable labor that make the shipbreaking and recycling business as a potential sector for the country. In addition, ship recycling and its related businesses are helping to solve our nation’s unemployment issues at all …


Thermally Rearranging Polyimide Networks For High-Temperature Applications, William Guzman Dec 2023

Thermally Rearranging Polyimide Networks For High-Temperature Applications, William Guzman

Dissertations

High-performance polymers can retain functional properties when exposed to long-term or short-term durations of harsh conditions, such as mechanical action, at elevated temperatures (>177 °C). A mixture of intramolecular and intermolecular forces of and between polymer chains provide excellent property retention at elevated temperatures. Specifically, the highly aromatic nature of high-performance polymer backbones provides outstanding thermal stability, which is typically attributed to π-π stacking. However, the interrelationship between thermal stability and high aromaticity creates a challenging structure-processing relationship paradigm, which causes poor polymer processability in most high-performance polymers. Herein, it was demonstrated that rationally designing a crosslinking phenylethynyl imide …


Cobalt Chromium In Biomedical Applications And The Development Of A Pspp Map, Nouralhouda Jamal Dec 2023

Cobalt Chromium In Biomedical Applications And The Development Of A Pspp Map, Nouralhouda Jamal

Bagley College of Engineering Publications and Scholarship

During the world wars, Cobalt-Chromium (Co-Cr) alloys gained prominence for their use in aircraft engine components, where they exhibited high temperature strength and durability. They are used in a wide range of industries due to their unique set of qualities, particularly strength, corrosion resistance, and biocompatibility. They have emerged as versatile materials with a broad spectrum of applications, from aerospace and automotive components to biomedical implants.

This paper presents a thorough analysis of its composition, processing techniques, microstructure, mechanical properties, and performance characteristics. The primary goal of this project is to develop a PSPP (Process, structure, properties, and performance) map …


Barriers To Use Of Cross-Laminated Timber In Maine, Shane R. O'Neill Dec 2023

Barriers To Use Of Cross-Laminated Timber In Maine, Shane R. O'Neill

Forest Resources Faculty Scholarship

To increase understanding of both the adoption rate and in-state manufacturing of mass timber In Maine, the 131st Legislature and Governor Mills passed LD 881, a resolve directing a study of the barriers facing cross-laminated timber In Maine and provide recommendations to promote their use in construction. This study was developed in response to the resolve. The study engaged 108 unique participants to define available training, education, and experiences across the stakeholders throughout the building lifecycle process in the state.

From this information, the following five recommendations are proposed:

  1. Understand the policies and initiatives of other states to develop …


Modification Strategies For Development Of 2d Material-Based Electrocatalysts For Alcohol Oxidation Reaction, Haichang Fu, Zhangxin Chen, Xiaohe Chen, Fan Jing, Hua Yu, Dan Chen, Binbin Yu, Yun Hang Hu, Yanxian Jin Dec 2023

Modification Strategies For Development Of 2d Material-Based Electrocatalysts For Alcohol Oxidation Reaction, Haichang Fu, Zhangxin Chen, Xiaohe Chen, Fan Jing, Hua Yu, Dan Chen, Binbin Yu, Yun Hang Hu, Yanxian Jin

Michigan Tech Publications, Part 2

2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface …


Modification Strategies For Development Of 2d Material-Based Electrocatalysts For Alcohol Oxidation Reaction, Haichang Fu, Zhangxin Chen, Xiaohe Chen, Fan Jing, Hua Yu, Dan Chen, Binbin Yu, Yun Hang Hu, Yanxian Jin Dec 2023

Modification Strategies For Development Of 2d Material-Based Electrocatalysts For Alcohol Oxidation Reaction, Haichang Fu, Zhangxin Chen, Xiaohe Chen, Fan Jing, Hua Yu, Dan Chen, Binbin Yu, Yun Hang Hu, Yanxian Jin

Michigan Tech Publications, Part 2

2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface …


A Comprehensive Review On Metal Oxide-Nanocellulose Composites In Sustainable Active And Intelligent Food Packaging, Kalpani Y. Perera, Amit Jaiswal, Swarma Jaiswal, Dileswar Pradhan Dec 2023

A Comprehensive Review On Metal Oxide-Nanocellulose Composites In Sustainable Active And Intelligent Food Packaging, Kalpani Y. Perera, Amit Jaiswal, Swarma Jaiswal, Dileswar Pradhan

Articles

The aim of this article is to provide an overview of the potential advantages and drawbacks of nanocellulose and metal oxide-based composites in food packaging. These materials offer improved mechanical and barrier properties, as well as antioxidant and antimicrobial benefits that extend the shelf life of food products. Nanocomposite structures protect food from various physiological factors and immobilize enzymes, while metal oxide nanoparticles provide antibacterial effects against Gram-positive and Gram-negative bacteria. However, there are concerns regarding the safety of nanoparticles and their potential migration into packaged food during processing and storage. This article explores these issues and highlights the need …


Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang Dec 2023

Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang

Doctoral Dissertations

347H austenitic stainless steel exhibits exceptional creep and corrosion resistance, rendering it an exemplary candidate for pipeline materials, particularly in mid- to high-temperature working conditions. However, due to constraints in component dimensions, welding has been chosen as the preferred method for joining pipeline systems extensively employed in nuclear power plants, fossil fuel plants, and petrochemical companies. The welding process entails the accumulation of residual stress during the cooling stage, along with the introduction of microstructure evolution. Moreover, the residual stress field and microstructure continuously evolve under service conditions, thereby intensifying the susceptibility of crack initiation and propagation. The initial residual …


Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella Dec 2023

Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella

Doctoral Dissertations

Glasses are ubiquitous in daily life and have unique properties which are a consequence of the underlying disordered structure. By understanding the fundamental processes that govern these properties, we can modify glasses for desired applications. Key to understanding the structure-dynamics relationship in glasses is the variety of relaxation processes that exist below the glass transition temperature. Though these relaxations are well characterized with macroscopic experimental techniques, the microscopic nature of these relaxations is difficult to elucidate with experimental tools due to the requirements of timescale and spatial resolution. There remain many questions regarding the microscopic nature of relaxation in glass …


3d Experimental Studies Of Temperature And Crystallographic Effects On Creep And Strength In Rock Salt, Amirsalar Moslehy Dec 2023

3d Experimental Studies Of Temperature And Crystallographic Effects On Creep And Strength In Rock Salt, Amirsalar Moslehy

Doctoral Dissertations

Salt domes utilization as storage reservoirs in the energy sector has led to extensive studies on rock salt’s mechanical and geothermal behavior. These important facilities’ safety and serviceability rely on understanding rock salt’s compressive strength and creep behavior under various loading directions, water contents, in-situ stresses, and temperatures. Despite numerous studies on rock salt’s mechanical behavior in the literature, there are still many unanswered questions about rock salt’s behavior. This dissertation was aimed at utilizing state-of-the-art experimental techniques such as 3D synchrotron micro-computed tomography (SMT) and 3D x-ray diffraction (3DXRD) along with hundreds of compression and creep experiments to enhance …