Open Access. Powered by Scholars. Published by Universities.®

Statistical Models Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Statistical Models

Statistical Approaches Of Gene Set Analysis With Quantitative Trait Loci For High-Throughput Genomic Studies., Samarendra Das Dec 2020

Statistical Approaches Of Gene Set Analysis With Quantitative Trait Loci For High-Throughput Genomic Studies., Samarendra Das

Electronic Theses and Dissertations

Recently, gene set analysis has become the first choice for gaining insights into the underlying complex biology of diseases through high-throughput genomic studies, such as Microarrays, bulk RNA-Sequencing, single cell RNA-Sequencing, etc. It also reduces the complexity of statistical analysis and enhances the explanatory power of the obtained results. Further, the statistical structure and steps common to these approaches have not yet been comprehensively discussed, which limits their utility. Hence, a comprehensive overview of the available gene set analysis approaches used for different high-throughput genomic studies is provided. The analysis of gene sets is usually carried out based on …


Estimation And Testing Of Gene Expression Heterosis, Tieming Ji, Peng Liu, Dan Nettleton Jun 2019

Estimation And Testing Of Gene Expression Heterosis, Tieming Ji, Peng Liu, Dan Nettleton

Dan Nettleton

Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hybrid offspring is superior to that of its two inbred parents. The heterosis phenomenon is extensively utilized in agriculture though the molecular basis is still unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers have begun to compare expression levels of thousands of genes between parental inbred lines and their hybrid offspring to search for evidence of gene expression heterosis. Standard statistical approaches for separately analyzing expression data for each gene can produce biased and highly variable estimates and unreliable tests of heterosis. …


Substantial Contribution Of Genetic Variation In The Expression Of Transcription Factors To Phenotypic Variation Revealed By Erd-Gwas, Hung-Ying Lin, Qiang Liu, Xiao Li, Jinliang Yang, Sanzhen Liu, Yinlian Huang, Michael J. Scanlon, Dan Nettleton, Patrick S. Schnable Jun 2019

Substantial Contribution Of Genetic Variation In The Expression Of Transcription Factors To Phenotypic Variation Revealed By Erd-Gwas, Hung-Ying Lin, Qiang Liu, Xiao Li, Jinliang Yang, Sanzhen Liu, Yinlian Huang, Michael J. Scanlon, Dan Nettleton, Patrick S. Schnable

Dan Nettleton

Background: There are significant limitations in existing methods for the genome-wide identification of genes whose expression patterns affect traits.

Results: The transcriptomes of five tissues from 27 genetically diverse maize inbred lines were deeply sequenced to identify genes exhibiting high and low levels of expression variation across tissues or genotypes. Transcription factors are enriched among genes with the most variation in expression across tissues, as well as among genes with higher-than-median levels of variation in expression across genotypes. In contrast, transcription factors are depleted among genes whose expression is either highly stable or highly variable across genotypes. We developed a …


Statistical Methods For Two Problems In Cancer Research: Analysis Of Rna-Seq Data From Archival Samples And Characterization Of Onset Of Multiple Primary Cancers, Jialu Li May 2017

Statistical Methods For Two Problems In Cancer Research: Analysis Of Rna-Seq Data From Archival Samples And Characterization Of Onset Of Multiple Primary Cancers, Jialu Li

Dissertations & Theses (Open Access)

My dissertation is focused on quantitative methodology development and application for two important topics in translational and clinical cancer research.

The first topic was motivated by the challenge of applying transcriptome sequencing (RNA-seq) to formalin-fixation and paraffin-embedding (FFPE) tumor samples for reliable diagnostic development. We designed a biospecimen study to directly compare gene expression results from different protocols to prepare libraries for RNA-seq from human breast cancer tissues, with randomization to fresh-frozen (FF) or FFPE conditions. To comprehensively evaluate the FFPE RNA-seq data quality for expression profiling, we developed multiple computational methods for assessment, such as the uniformity and continuity …


A Gene-Based Association Method For Mapping Traits Using Reference Transcriptome Data, Eric R. Gamazon, Heather Wheeler, Kaanan P. Shah, Sahar V. Mozaffari, Keston Aquino-Michaels, Robert J. Carroll, Anne E. Eyler, Joshua C. Denny, Dan L. Nicolae, Nancy J. Cox, Hae Kyung Im Aug 2016

A Gene-Based Association Method For Mapping Traits Using Reference Transcriptome Data, Eric R. Gamazon, Heather Wheeler, Kaanan P. Shah, Sahar V. Mozaffari, Keston Aquino-Michaels, Robert J. Carroll, Anne E. Eyler, Joshua C. Denny, Dan L. Nicolae, Nancy J. Cox, Hae Kyung Im

Heather Wheeler

Genome-wide association studies (GWAS) have identified thousands of variants robustly associated with complex traits. However, the biological mechanisms underlying these associations are, in general, not well understood. We propose a gene-based association method called PrediXcan that directly tests the molecular mechanisms through which genetic variation affects phenotype. The approach estimates the component of gene expression determined by an individual’s genetic profile and correlates ‘imputed’ gene expression with the phenotype under investigation to identify genes involved in the etiology of the phenotype. Genetically regulated gene expression is estimated using whole-genome tissue-dependent prediction models trained with reference transcriptome data sets. PrediXcan enjoys …


A Gene-Based Association Method For Mapping Traits Using Reference Transcriptome Data, Eric R. Gamazon, Heather Wheeler, Kaanan P. Shah, Sahar V. Mozaffari, Keston Aquino-Michaels, Robert J. Carroll, Anne E. Eyler, Joshua C. Denny, Gtex Consortium, Dan L. Nicolae, Nancy J. Cox, Hae Kyung Im Sep 2015

A Gene-Based Association Method For Mapping Traits Using Reference Transcriptome Data, Eric R. Gamazon, Heather Wheeler, Kaanan P. Shah, Sahar V. Mozaffari, Keston Aquino-Michaels, Robert J. Carroll, Anne E. Eyler, Joshua C. Denny, Gtex Consortium, Dan L. Nicolae, Nancy J. Cox, Hae Kyung Im

Bioinformatics Faculty Publications

Genome-wide association studies (GWAS) have identified thousands of variants robustly associated with complex traits. However, the biological mechanisms underlying these associations are, in general, not well understood. We propose a gene-based association method called PrediXcan that directly tests the molecular mechanisms through which genetic variation affects phenotype. The approach estimates the component of gene expression determined by an individual’s genetic profile and correlates ‘imputed’ gene expression with the phenotype under investigation to identify genes involved in the etiology of the phenotype. Genetically regulated gene expression is estimated using whole-genome tissue-dependent prediction models trained with reference transcriptome data sets. PrediXcan enjoys …


Nonparametric Methods For Analyzing Replication Origins In Genomewide Data, Debashis Ghosh Jun 2004

Nonparametric Methods For Analyzing Replication Origins In Genomewide Data, Debashis Ghosh

The University of Michigan Department of Biostatistics Working Paper Series

Due to the advent of high-throughput genomic technology, it has become possible to globally monitor cellular activities on a genomewide basis. With these new methods, scientists can begin to address important biological questions. One such question involves the identification of replication origins, which are regions in chromosomes where DNA replication is initiated. In addition, one hypothesis regarding replication origins is that their locations are non-random throughout the genome. In this article, we develop methods for identification of and cluster inference regarding replication origins involving genomewide expression data. We compare several nonparametric regression methods for the identification of replication origin locations. …


Semiparametric Methods For Identification Of Tumor Progression Genes From Microarray Data, Debashis Ghosh, Arul Chinnaiyan Jun 2004

Semiparametric Methods For Identification Of Tumor Progression Genes From Microarray Data, Debashis Ghosh, Arul Chinnaiyan

The University of Michigan Department of Biostatistics Working Paper Series

The use of microarray data has become quite commonplace in medical and scientific experiments. We focus here on microarray data generated from cancer studies. It is potentially important for the discovery of biomarkers to identify genes whose expression levels correlate with tumor progression. In this article, we develop statistical procedures for the identification of such genes, which we term tumor progression genes. Two methods are considered in this paper. The first is use of a proportional odds procedure, combined with false discovery rate estimation techniques to adjust for the multiple testing problem. The second method is based on order-restricted estimation …


The False Discovery Rate: A Variable Selection Perspective, Debashis Ghosh, Wei Chen, Trivellore E. Raghuanthan Jun 2004

The False Discovery Rate: A Variable Selection Perspective, Debashis Ghosh, Wei Chen, Trivellore E. Raghuanthan

The University of Michigan Department of Biostatistics Working Paper Series

In many scientific and medical settings, large-scale experiments are generating large quantities of data that lead to inferential problems involving multiple hypotheses. This has led to recent tremendous interest in statistical methods regarding the false discovery rate (FDR). Several authors have studied the properties involving FDR in a univariate mixture model setting. In this article, we turn the problem on its side; in this manuscript, we show that FDR is a by-product of Bayesian analysis of variable selection problem for a hierarchical linear regression model. This equivalence gives many Bayesian insights as to why FDR is a natural quantity to …


Classification Using Generalized Partial Least Squares, Beiying Ding, Robert Gentleman May 2004

Classification Using Generalized Partial Least Squares, Beiying Ding, Robert Gentleman

Bioconductor Project Working Papers

The advances in computational biology have made simultaneous monitoring of thousands of features possible. The high throughput technologies not only bring about a much richer information context in which to study various aspects of gene functions but they also present challenge of analyzing data with large number of covariates and few samples. As an integral part of machine learning, classification of samples into two or more categories is almost always of interest to scientists. In this paper, we address the question of classification in this setting by extending partial least squares (PLS), a popular dimension reduction tool in chemometrics, in …


Covariate Adjustment In The Analysis Of Microarray Data From Clinical Studies, Debashis Ghosh, Arul Chinnaiyan Apr 2004

Covariate Adjustment In The Analysis Of Microarray Data From Clinical Studies, Debashis Ghosh, Arul Chinnaiyan

The University of Michigan Department of Biostatistics Working Paper Series

There is tremendous scientific interest in the analysis of gene expression data in clinical settings, such as oncology. In this paper, we describe the importance of adjusting for confounders and other prognostic factors in order to select for differentially expressed genes for followup validation studies. We develop two approaches to the analysis of microarray data in nonrandomized clinical settings. The first is an extension of the current significance analysis of microarray procedures, where other covariates are taken into account. The second is a novel covariate-adjusted regression modelling based on the receiver operating characteristic curve for the analysis of gene expression …


Mixture Models For Assessing Differential Expression In Complex Tissues Using Microarray Data, Debashis Ghosh Feb 2004

Mixture Models For Assessing Differential Expression In Complex Tissues Using Microarray Data, Debashis Ghosh

The University of Michigan Department of Biostatistics Working Paper Series

The use of DNA microarrays has become quite popular in many scientific and medical disciplines, such as in cancer research. One common goal of these studies is to determine which genes are differentially expressed between cancer and healthy tissue, or more generally, between two experimental conditions. A major complication in the molecular profiling of tumors using gene expression data is that the data represent a combination of tumor and normal cells. Much of the methodology developed for assessing differential expression with microarray data has assumed that tissue samples are homogeneous. In this article, we outline a general framework for determining …


Identification Of Regulatory Elements Using A Feature Selection Method, Sunduz Keles, Mark J. Van Der Laan, Michael B. Eisen Sep 2001

Identification Of Regulatory Elements Using A Feature Selection Method, Sunduz Keles, Mark J. Van Der Laan, Michael B. Eisen

U.C. Berkeley Division of Biostatistics Working Paper Series

Many methods have been described to identify regulatory motifs in the transcription control regions of genes that exhibit similar patterns of gene expression across a variety of experimental conditions. Here we focus on a single experimental condition, and utilize gene expression data to identify sequence motifs associated with genes that are activated under this experimental condition. We use a linear model with two way interactions to model gene expression as a function of sequence features (words) present in presumptive transcription control regions. The most relevant features are selected by a feature selection method called stepwise selection with monte carlo cross …