Open Access. Powered by Scholars. Published by Universities.®

Statistical Models Commons

Open Access. Powered by Scholars. Published by Universities.®

Deep Learning

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 13 of 13

Full-Text Articles in Statistical Models

Context Aware Music Recommendation And Playlist Generation, Elias Mann May 2024

Context Aware Music Recommendation And Playlist Generation, Elias Mann

SMU Journal of Undergraduate Research

There are many reasons people listen to music, and the type of music is largely determined by what the listener may be doing while they listen. For example, one may listen to one type of music while commuting, another while exercising, and yet another while relaxing. Without access to the physiological state of the user, current music recommendation methods rely on collaborative filtering - recommending music based on what other similar users listen to - and content based filtering - recommending songs based on their similarities to songs the user already prefers. With the rise in popularity of smart devices …


Representation Learning For Generative Models With Applications To Healthcare, Astronautics, And Aviation, Van Minh Nguyen May 2024

Representation Learning For Generative Models With Applications To Healthcare, Astronautics, And Aviation, Van Minh Nguyen

Theses and Dissertations

This dissertation explores applications of representation learning and generative models to challenges in healthcare, astronautics, and aviation.

The first part investigates the use of Generative Adversarial Networks (GANs) to synthesize realistic electronic health record (EHR) data. An initial attempt at training a GAN on the MIMIC-IV dataset encountered stability and convergence issues, motivating a deeper study of 1-Lipschitz regularization techniques for Auxiliary Classifier GANs (AC-GANs). An extensive ablation study on the CIFAR-10 dataset found that Spectral Normalization is key for AC-GAN stability and performance, while Weight Clipping fails to converge without Spectral Normalization. Analysis of the training dynamics provided further …


Learning Graphical Models Of Multivariate Functional Data With Applications To Neuroimaging, Jiajing Niu Dec 2022

Learning Graphical Models Of Multivariate Functional Data With Applications To Neuroimaging, Jiajing Niu

All Dissertations

This dissertation investigates the functional graphical models that infer the functional connectivity based on neuroimaging data, which is noisy, high dimensional and has limited samples. The dissertation provides two recipes to infer the functional graphical model: 1) a fully Bayesian framework 2) an end-to-end deep model.

We first propose a fully Bayesian regularization scheme to estimate functional graphical models. We consider a direct Bayesian analog of the functional graphical lasso proposed by Qiao et al. (2019).. We then propose a regularization strategy via the graphical horseshoe. We compare both Bayesian approaches to the frequentist functional graphical lasso, and compare the …


Classification Of Breast Cancer Histopathological Images Using Semi-Supervised Gans, Balaji Avvaru, Nibhrat Lohia, Sowmya Mani, Vijayasrikanth Kaniti Sep 2022

Classification Of Breast Cancer Histopathological Images Using Semi-Supervised Gans, Balaji Avvaru, Nibhrat Lohia, Sowmya Mani, Vijayasrikanth Kaniti

SMU Data Science Review

Breast cancer is diagnosed more frequently than skin cancer in women in the United States. Most breast cancer cases are diagnosed in women, while children and men are less likely to develop the disease. Various tissues in the breast grow uncontrollably, resulting in breast cancer. Different treatments analyze microscopic histopathology images for diagnosis that help accurately detect cancer cells. Deep learning is one of the evolving techniques to classify images where accuracy depends on the volume and quality of labeled images. This study used various pre-trained models to train the histopathological images and analyze these models to create a new …


Machine Learning Approaches For Improving Prediction Performance Of Structure-Activity Relationship Models, Gabriel Idakwo Aug 2020

Machine Learning Approaches For Improving Prediction Performance Of Structure-Activity Relationship Models, Gabriel Idakwo

Dissertations

In silico bioactivity prediction studies are designed to complement in vivo and in vitro efforts to assess the activity and properties of small molecules. In silico methods such as Quantitative Structure-Activity/Property Relationship (QSAR) are used to correlate the structure of a molecule to its biological property in drug design and toxicological studies. In this body of work, I started with two in-depth reviews into the application of machine learning based approaches and feature reduction methods to QSAR, and then investigated solutions to three common challenges faced in machine learning based QSAR studies.

First, to improve the prediction accuracy of learning …


Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh May 2020

Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh

Electronic Thesis and Dissertation Repository

Rapid growth in numbers of connected devices, including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is creating an explosion of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other hand, edge computing is limited in terms of computational power and thus is not well suited for …


Ordinal Hyperplane Loss, Bob Vanderheyden Dec 2019

Ordinal Hyperplane Loss, Bob Vanderheyden

Doctor of Data Science and Analytics Dissertations

This research presents the development of a new framework for analyzing ordered class data, commonly called “ordinal class” data. The focus of the work is the development of classifiers (predictive models) that predict classes from available data. Ratings scales, medical classification scales, socio-economic scales, meaningful groupings of continuous data, facial emotional intensity and facial age estimation are examples of ordinal data for which data scientists may be asked to develop predictive classifiers. It is possible to treat ordinal classification like any other classification problem that has more than two classes. Specifying a model with this strategy does not fully utilize …


Texture-Based Deep Neural Network For Histopathology Cancer Whole Slide Image (Wsi) Classification, Nelson Zange Tsaku Aug 2019

Texture-Based Deep Neural Network For Histopathology Cancer Whole Slide Image (Wsi) Classification, Nelson Zange Tsaku

Master of Science in Computer Science Theses

Automatic histopathological Whole Slide Image (WSI) analysis for cancer classification has been highlighted along with the advancements in microscopic imaging techniques. However, manual examination and diagnosis with WSIs is time-consuming and tiresome. Recently, deep convolutional neural networks have succeeded in histopathological image analysis. In this paper, we propose a novel cancer texture-based deep neural network (CAT-Net) that learns scalable texture features from histopathological WSIs. The innovation of CAT-Net is twofold: (1) capturing invariant spatial patterns by dilated convolutional layers and (2) Reducing model complexity while improving performance. Moreover, CAT-Net can provide discriminative texture patterns formed on cancerous regions of histopathological …


Self-Driving Cars: Evaluation Of Deep Learning Techniques For Object Detection In Different Driving Conditions, Ramesh Simhambhatla, Kevin Okiah, Shravan Kuchkula, Robert Slater May 2019

Self-Driving Cars: Evaluation Of Deep Learning Techniques For Object Detection In Different Driving Conditions, Ramesh Simhambhatla, Kevin Okiah, Shravan Kuchkula, Robert Slater

SMU Data Science Review

Deep Learning has revolutionized Computer Vision, and it is the core technology behind capabilities of a self-driving car. Convolutional Neural Networks (CNNs) are at the heart of this deep learning revolution for improving the task of object detection. A number of successful object detection systems have been proposed in recent years that are based on CNNs. In this paper, an empirical evaluation of three recent meta-architectures: SSD (Single Shot multi-box Detector), R-CNN (Region-based CNN) and R-FCN (Region-based Fully Convolutional Networks) was conducted to measure how fast and accurate they are in identifying objects on the road, such as vehicles, pedestrians, …


Leveraging Natural Language Processing Applications And Microblogging Platform For Increased Transparency In Crisis Areas, Ernesto Carrera-Ruvalcaba, Johnson Ekedum, Austin Hancock, Ben Brock May 2019

Leveraging Natural Language Processing Applications And Microblogging Platform For Increased Transparency In Crisis Areas, Ernesto Carrera-Ruvalcaba, Johnson Ekedum, Austin Hancock, Ben Brock

SMU Data Science Review

Through microblogging applications, such as Twitter, people actively document their lives even in times of natural disasters such as hurricanes and earthquakes. While first responders and crisis-teams are able to help people who call 911, or arrive at a designated shelter, there are vast amounts of information being exchanged online via Twitter that provide real-time, location-based alerts that are going unnoticed. To effectively use this information, the Tweets must be verified for authenticity and categorized to ensure that the proper authorities can be alerted. In this paper, we create a Crisis Message Corpus from geotagged Tweets occurring during 7 hurricanes …


Improving Vix Futures Forecasts Using Machine Learning Methods, James Hosker, Slobodan Djurdjevic, Hieu Nguyen, Robert Slater Jan 2019

Improving Vix Futures Forecasts Using Machine Learning Methods, James Hosker, Slobodan Djurdjevic, Hieu Nguyen, Robert Slater

SMU Data Science Review

The problem of forecasting market volatility is a difficult task for most fund managers. Volatility forecasts are used for risk management, alpha (risk) trading, and the reduction of trading friction. Improving the forecasts of future market volatility assists fund managers in adding or reducing risk in their portfolios as well as in increasing hedges to protect their portfolios in anticipation of a market sell-off event. Our analysis compares three existing financial models that forecast future market volatility using the Chicago Board Options Exchange Volatility Index (VIX) to six machine/deep learning supervised regression methods. This analysis determines which models provide best …


Quantifying Human Biological Age: A Machine Learning Approach, Syed Ashiqur Rahman Jan 2019

Quantifying Human Biological Age: A Machine Learning Approach, Syed Ashiqur Rahman

Graduate Theses, Dissertations, and Problem Reports

Quantifying human biological age is an important and difficult challenge. Different biomarkers and numerous approaches have been studied for biological age prediction, each with its advantages and limitations. In this work, we first introduce a new anthropometric measure (called Surface-based Body Shape Index, SBSI) that accounts for both body shape and body size, and evaluate its performance as a predictor of all-cause mortality. We analyzed data from the National Health and Human Nutrition Examination Survey (NHANES). Based on the analysis, we introduce a new body shape index constructed from four important anthropometric determinants of body shape and body size: body …


Deep Machine Learning For Mechanical Performance And Failure Prediction, Elijah Reber, Nickolas D. Winovich, Guang Lin Aug 2018

Deep Machine Learning For Mechanical Performance And Failure Prediction, Elijah Reber, Nickolas D. Winovich, Guang Lin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Deep learning has provided opportunities for advancement in many fields. One such opportunity is being able to accurately predict real world events. Ensuring proper motor function and being able to predict energy output is a valuable asset for owners of wind turbines. In this paper, we look at how effective a deep neural network is at predicting the failure or energy output of a wind turbine. A data set was obtained that contained sensor data from 17 wind turbines over 13 months, measuring numerous variables, such as spindle speed and blade position and whether or not the wind turbine experienced …