Open Access. Powered by Scholars. Published by Universities.®

Statistical Models Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Statistical Models

How Often Does The Best Team Win? A Unified Approach To Understanding Randomness In North American Sport, Michael J. Lopez, Gregory J. Matthews, Benjamin S. Baumer Jan 2018

How Often Does The Best Team Win? A Unified Approach To Understanding Randomness In North American Sport, Michael J. Lopez, Gregory J. Matthews, Benjamin S. Baumer

Mathematics and Statistics: Faculty Publications and Other Works

Statistical applications in sports have long centered on how to best separate signal (e.g., team talent) from random noise. However, most of this work has concentrated on a single sport, and the development of meaningful cross-sport comparisons has been impeded by the difficulty of translating luck from one sport to another. In this manuscript we develop Bayesian state-space models using betting market data that can be uniformly applied across sporting organizations to better understand the role of randomness in game outcomes. These models can be used to extract estimates of team strength, the between-season, within-season and game-to-game variability of team …


A Gene-Based Association Method For Mapping Traits Using Reference Transcriptome Data, Eric R. Gamazon, Heather Wheeler, Kaanan P. Shah, Sahar V. Mozaffari, Keston Aquino-Michaels, Robert J. Carroll, Anne E. Eyler, Joshua C. Denny, Gtex Consortium, Dan L. Nicolae, Nancy J. Cox, Hae Kyung Im Sep 2015

A Gene-Based Association Method For Mapping Traits Using Reference Transcriptome Data, Eric R. Gamazon, Heather Wheeler, Kaanan P. Shah, Sahar V. Mozaffari, Keston Aquino-Michaels, Robert J. Carroll, Anne E. Eyler, Joshua C. Denny, Gtex Consortium, Dan L. Nicolae, Nancy J. Cox, Hae Kyung Im

Bioinformatics Faculty Publications

Genome-wide association studies (GWAS) have identified thousands of variants robustly associated with complex traits. However, the biological mechanisms underlying these associations are, in general, not well understood. We propose a gene-based association method called PrediXcan that directly tests the molecular mechanisms through which genetic variation affects phenotype. The approach estimates the component of gene expression determined by an individual’s genetic profile and correlates ‘imputed’ gene expression with the phenotype under investigation to identify genes involved in the etiology of the phenotype. Genetically regulated gene expression is estimated using whole-genome tissue-dependent prediction models trained with reference transcriptome data sets. PrediXcan enjoys …