Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Quantum Physics

The Black-To-White Hole Transition, Farshid Soltani Apr 2024

The Black-To-White Hole Transition, Farshid Soltani

Electronic Thesis and Dissertation Repository

Classically, an isolated black hole is a stable gravitational object. If however semiclassical effects are taken into account, an isolated black hole can be shown to slowly radiate its mass away in a process called evaporation. At the end of the evaporation process, when the size of the horizon becomes Planckian, the quantum nature of the gravitational field can no longer be neglected and the dynamics of the horizon is governed by quantum gravity. The main objective of this thesis is the systematic investigation of a tentative scenario for the “end of the life” of a black hole: the black-to-white …


Entanglement In The Hawking Effect: From Astrophysical To Optical Black Holes, Dimitrios Kranas Jul 2023

Entanglement In The Hawking Effect: From Astrophysical To Optical Black Holes, Dimitrios Kranas

LSU Doctoral Dissertations

The Hawking effect is an exciting physical prediction lying at the intersection of the two most successful theories of the past century, namely, Einstein’s theory of relativity and quantum mechanics. In this dissertation, we put special emphasis on the quantum aspects of the Hawking process encoded in the entanglement shared by the emitted fluxes of created quanta. In particular, we employ sharp tools from quantum information theory to quantify the entanglement produced by the Hawking effect throughout the black hole evaporation process. Our framework allows us to extend previous calculations of entanglement to a larger set of cases, for instance, …


Complex Semiclassics: Classical Models For Tunneling Using Complex Trajectories, Max Edward Meynig Jan 2016

Complex Semiclassics: Classical Models For Tunneling Using Complex Trajectories, Max Edward Meynig

Senior Projects Spring 2017

This project is inspired by the idea that black holes could explode due to a quantum process somewhat analogous to quantum mechanical tunneling. This idea was presented in recent research that also proposed that semiclassical physics could be used to investigate the so called black hole fireworks. Semiclassical physics connects quantum and classical physics and because of this it is a powerful tool for investigating gravity where the classical theory is known but there is no complete quantum theory. Unfortunately, the traditional tools in semiclassics that are needed fail to treat tunneling. However, if classical mechanics is extended to complex …


Magnetic Fields In An Expanding Universe, David Kastor, Jennie Traschen Mar 2014

Magnetic Fields In An Expanding Universe, David Kastor, Jennie Traschen

David Kastor

We find a solution to 4D Einstein-Maxwell theory coupled to a massless dilaton field describing a Melvin magnetic field in an expanding universe with 'stiff matter' equation of state parameter w=+1. As the universe expands, magnetic flux becomes more concentrated around the symmetry axis for dilaton coupling a<1/3√ and more dispersed for a>1/3√. An electric field circulates around the symmetry axis in the direction determined by Lenz's law. For a=0 the magnetic flux through a disk of fixed comoving radius is proportional to the proper area of the disk. This result disagrees with the usual expectation based on a test magnetic field that this …