Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Quantum Physics

Constraining H0 Via Extragalactic Parallax, Nicholas Ferree Apr 2023

Constraining H0 Via Extragalactic Parallax, Nicholas Ferree

Honors Theses

We examine the prospects for measurement of the Hubble parameter 𝐻0 via observation of the secular parallax of other galaxies due to our own motion relative to the cosmic microwave background rest frame. Peculiar velocities make distance measurements to individual galaxies highly uncertain, but a survey sampling many galaxies can still yield a precise 𝐻0 measurement. We use both a Fisher information formalism and simulations to forecast errors in 𝐻0 from such surveys, marginalizing over the unknown peculiar velocities. The optimum survey observes ∼ 102 galaxies within a redshift 𝐻0max = 0.06. The required errors …


Black Holes, Disk Structures, And Cosmological Implications In E-Dimensional Space, Subhash Kak, Menas C. Kafatos Dec 2022

Black Holes, Disk Structures, And Cosmological Implications In E-Dimensional Space, Subhash Kak, Menas C. Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

We examine a modern view of the universe that builds on achieved successes of quantum mechanics, general relativity, and information theory, bringing them together in integrated approach that is founded on the realization that space itself is e-dimensional. The global and local implications of noninteger dimensionality are examined, and how it may have increased from the value of zero to its current value is investigated. We find surprising aspects that tie to structures in the universe, black holes, and the role of observations.


Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper Apr 2018

Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper

STEM Student Research Symposium Posters

Primordial black holes are thought to have been formed at the early stages of the universe in the presence of non-homogeneous density distributions of dark matter. We are working under the assumption that dark matter consists of elementary low mass particles, specifically, spin 1/2 fermions. We further assume that dark matter is electrically neutral, thus its main interaction is gravitational. We investigate dark matter spin 1/2 fermions in orbit around a black hole atom and consider mass ranges for which the quantum description is appropriate. Solutions to the Dirac equation are utilized to describe the radial mass distribution of primordial …


Dipole Bound Excited States Of Polycyclic Aromatic Hydrocarbons Containing Nitrogen And Their Relation To The Interstellar Medium, Mallory L. Theis Apr 2014

Dipole Bound Excited States Of Polycyclic Aromatic Hydrocarbons Containing Nitrogen And Their Relation To The Interstellar Medium, Mallory L. Theis

Honors College Theses

Polycyclic aromatic hydrocarbons (PAHs) are the most abundant type of molecule present in the interstellar medium (ISM). It has been hypothesized that nitrogen replacement within a ring is likely for PAHs present in the ISM. Additionally, electrons, protons, and hydrogen atoms are readily added to or removed from PAHs creating a truly diverse set of chemistries in various interstellar regions. The presence of a nitrogen within a PAH (called a PANH herein) that is additionally dehydrogenated leads to a neutral radical with a large dipole moment. It has recently been shown through the use of high-level quantum chemical computations for …


Magnetic Fields In An Expanding Universe, David Kastor, Jennie Traschen Mar 2014

Magnetic Fields In An Expanding Universe, David Kastor, Jennie Traschen

David Kastor

We find a solution to 4D Einstein-Maxwell theory coupled to a massless dilaton field describing a Melvin magnetic field in an expanding universe with 'stiff matter' equation of state parameter w=+1. As the universe expands, magnetic flux becomes more concentrated around the symmetry axis for dilaton coupling a<1/3√ and more dispersed for a>1/3√. An electric field circulates around the symmetry axis in the direction determined by Lenz's law. For a=0 the magnetic flux through a disk of fixed comoving radius is proportional to the proper area of the disk. This result disagrees with the usual expectation based on a test magnetic field that this …


Quantum Man, Julian Voss-Andreae Mar 2013

Quantum Man, Julian Voss-Andreae

The STEAM Journal

According to quantum physics, the world is fundamentally quite different than it seems. Drawing inspiration from the underlying nature of reality, former quantum physicist Julian Voss-Andreae created an image of a walking human as a quantum object. Made up of parallel sheets of steel, the sculpture is a metaphor for the counter-intuitive world of quantum physics. Symbolizing the dual nature of matter with the appearance of classical reality on the surface and cloudy quantum behavior underneath, the sculpture seems to consist of solid steel when seen from the front, but dissolves into almost nothing when seen from the side.


Essentials Of The Theory Of Abstraction - Lecture, Subhajit Kumar Ganguly Jan 2012

Essentials Of The Theory Of Abstraction - Lecture, Subhajit Kumar Ganguly

Subhajit Kumar Ganguly

In not favouring solutions or sets of solutions, the principle of zero-postulation drives away any unwanted incompleteness from the description of the world. It is the interactions between the possible exhaustive set of solutions that creates the impression pointedness or directiveness in the universe, leading to the formation of clusters, as discussed earlier. These interactions may be chaotic in nature, giving rise to attractor points where the directiveness inside any given system asymptotically seem to approach. It is this directiveness, in turn, inside a given system or in the universe as a whole, that is the cause of all known …