Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 14 of 14

Full-Text Articles in Quantum Physics

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


Co-Planar Waveguides For Microwave Atom Chips, Morgan Logsdon May 2022

Co-Planar Waveguides For Microwave Atom Chips, Morgan Logsdon

Undergraduate Honors Theses

This thesis describes research to develop co-planar waveguides (CPW) for coupling microwaves from mm-scale coaxial cables into 50 μm-scale microstrip transmission lines of a microwave atom chip. This new atom chip confines and manipulates atoms using spin-specific microwave AC Zeeman potentials and is particularly well suited for trapped atom interferometry. The coaxial-to-microstrip coupler scheme uses a focused CPW (FCPW) that shrinks the microwave field mode while maintaining a constant 50 Ω impedance for optimal power coupling. The FCPW development includes the simulation, design, fabrication, and testing of multiple CPW and microstrip prototypes using aluminum nitride substrates. Notably, the FCPW approach …


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


Resource Efficient Design Of Quantum Circuits For Cryptanalysis And Scientific Computing Applications, Edgard Munoz-Coreas Jan 2020

Resource Efficient Design Of Quantum Circuits For Cryptanalysis And Scientific Computing Applications, Edgard Munoz-Coreas

Theses and Dissertations--Electrical and Computer Engineering

Quantum computers offer the potential to extend our abilities to tackle computational problems in fields such as number theory, encryption, search and scientific computation. Up to a superpolynomial speedup has been reported for quantum algorithms in these areas. Motivated by the promise of faster computations, the development of quantum machines has caught the attention of both academics and industry researchers. Quantum machines are now at sizes where implementations of quantum algorithms or their components are now becoming possible. In order to implement quantum algorithms on quantum machines, resource efficient circuits and functional blocks must be designed. In this work, we …


Recent Developments In The Pyscf Program Package, Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Gun, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. Mcclain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximillian Scheurer, Henry F. Schurkus, James E.T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu Sokolov, Garnet Kin-Lic Chan Jan 2020

Recent Developments In The Pyscf Program Package, Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Gun, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. Mcclain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximillian Scheurer, Henry F. Schurkus, James E.T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu Sokolov, Garnet Kin-Lic Chan

University Administration Publications

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and …


Beyond Conventional C-Plane Gan-Based Light Emitting Diodes: A Systematic Exploration Of Leds On Semi-Polar Orientations, Morteza Monavarian Jan 2016

Beyond Conventional C-Plane Gan-Based Light Emitting Diodes: A Systematic Exploration Of Leds On Semi-Polar Orientations, Morteza Monavarian

Theses and Dissertations

Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the “Green Gap”, is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the “quantum confined Stark effect”) and low indium incorporation efficiency that …


The Role Of Quantum Dot Size On The Performance Of Intermediate Band Solar Cells, Najla Alnami Dec 2014

The Role Of Quantum Dot Size On The Performance Of Intermediate Band Solar Cells, Najla Alnami

Graduate Theses and Dissertations

The goal of this thesis is to understand possible mechanisms for the reported decrease of the open circuit voltage and solar cell efficiency in quantum dot (QD) intermediate band solar cells (IBSCs). More specifically, the effect of indium arsenide (InAs) QD height on the open circuit voltage and solar cell efficiency was studied in a systematic way. To explore this effect in QD solar cells, several solar cells (SCs) were grown with varying InAs QD heights. All experimental characteristics of the QD solar cells were compared to a reference structure without QDs. All samples were grown by Molecular Beam Epitaxy …


Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park Oct 2014

Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park

Open Access Dissertations

The exponential miniaturization of Si CMOS technology has been a key to the electronics revolution. However, the continuous downscaling of the gate length becomes the biggest challenge to maintain higher speed, lower power, and better electrostatic integrity for each following generation. Hence, novel devices and better channel materials than Si are considered to improve the metal-oxide-semiconductor field-effect transistors (MOSFETs) device performance. III-V compound semiconductors and multi-gate structures are being considered as promising candidates in the next CMOS technology. III-V and Si nano-scale transistors in different architectures are investigated (1) to compare the performance between InGaAs of III-V compound semiconductors and …


Wireless Transmission Network : A Imagine, Radhey Shyam Meena Engineer, Neeraj Kumar Garg Asst.Prof Apr 2013

Wireless Transmission Network : A Imagine, Radhey Shyam Meena Engineer, Neeraj Kumar Garg Asst.Prof

Radhey Shyam Meena

World cannot be imagined without electrical power. Generally the power is transmitted through transmission networks. This paper describes an original idea to eradicate the hazardous usage of electrical wires which involve lot of confusion in particularly organizing them. Imagine a future in which wireless power transfer is feasible: cell phones, household robots, mp3 players, laptop computers and other portable electronic devices capable of charging themselves without ever being plugged in freeing us from that final ubiquitous power wire. This paper includes the techniques of transmitting power without using wires with an efficiency of about 95% with non-radioactivemethods. In this paper …


Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er., Deepa Sharma Mar 2013

Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er., Deepa Sharma

Radhey Shyam Meena

Grid-connected solar PV dramatically changes the load profile of an electric utility customer. The expected widespread adoption of solar generation by customers on the distribution system poses significant challenges to system operators both in transient and steady state operation, from issues including voltage swings, sudden weather-induced changes in generation, and legacy protective devices designed with one-way power flow in mind


Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er. Jan 2013

Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er.

Radhey Shyam Meena

As solar photovoltaic power generation becomes more commonplace, the inherent intermittency of the solar resource poses one of the great challenges to those who would design and implement the next generation smart grid. Specifically, grid-tied solar power generation is a distributed resource whose output can change extremely rapidly, resulting in many issues for the distribution system operator with a large quantity of installed photovoltaic devices. Battery energy storage systems are increasingly being used to help integrate solar power into the grid. These systems are capable of absorbing and delivering both real and reactive power with sub-second response times. With these …


Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er. Jul 2012

Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er.

Radhey Shyam Meena

Switchyard Provides the facilities for switching ,protection & Control of electric power. To handle high Voltage power with proper Safety measures. To isolate the noises coming from the grid with true 50Hz power SWITCH YARD IS IMPORTANT PART IN THERMAL PLANT. IN KALISINDH THERMAL 400KV AND 220KV SWITCH YARD LOCATED.


Efficient Modeling Techniques For Time-Dependent Quantum System With Applications To Carbon Nanotubes, Zuojing Chen Jan 2010

Efficient Modeling Techniques For Time-Dependent Quantum System With Applications To Carbon Nanotubes, Zuojing Chen

Masters Theses 1911 - February 2014

The famous Moore's law states: Since the invention of the integrated circuit, the number of transistors that can be placed on an integrated circuit has increased exponentially, doubling approximately every two years. As a result of the downscaling of the size of the transistor, quantum effects have become increasingly important while affecting significantly the device performances. Nowadays, at the nanometer scale, inter-atomic interactions and quantum mechanical properties need to be studied extensively. Device and material simulations are important to achieve these goals because they are flexible and less expensive than experiments. They are also important for designing and characterizing new …


Electric Field Induced Emission As A Diagnostic Tool For Measurement Of Local Electric Field Strengths, A. N. Dharamsi, K. H. Schoenbach Jan 1991

Electric Field Induced Emission As A Diagnostic Tool For Measurement Of Local Electric Field Strengths, A. N. Dharamsi, K. H. Schoenbach

Bioelectrics Publications

The phenomenon of electric field induced (EFI) emission is examined in several diatomic and polyatomic molecules. The possibility of using this phenomenon as a diagnostic tool to measure, nonintrusively, the strength and direction of local electric fields in plasmas is discussed. An estimate of the EFI signal emitted in a typical application plasma is given. This yields a lower bound on the detector sensitivity necessary to exploit EFI emission in practical applications. It is concluded that, at present, the EFI signal could be measured by some very sensitive infrared detection schemes available. Current progress in infrared detector technology, if maintained, …