Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Plasma

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 49

Full-Text Articles in Plasma and Beam Physics

Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong Dec 2023

Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong

Seton Hall University Dissertations and Theses (ETDs)

Plasma catalysis is an advantageous approach that combines the effects of plasma with the enhancements of a catalyst. By utilizing a nickel catalyst in the plasma discharge zone of a dielectric barrier discharge (DBD), it can give an enhancement to the electrical field, boost microdischarges, and increase conversion and selectivity rates of CH4 and CO2 in the dry reforming of methane (DRM) reaction.

Industrial application of nickel catalysts in DBD Plasma DRM process are limited by poor stability, which is caused by the sintering of active metal particles and coke deposition on the catalyst surface. In this work, …


On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang Jan 2023

On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang

Bioelectrics Publications

Dielectric barrier discharges (DBD) are widely utilised non-equilibrium atmospheric pressure plasmas with a diverse range of applications, such as material processing, surface treatment, light sources, pollution control, and medicine. Over the course of several decades, extensive research has been dedicated to the generation of homogeneous DBD (H-DBD), focussing on understanding the transition from H-DBD to filamentary DBD and exploring strategies to create and sustain H-DBD. This paper first discusses the influence of various parameters on DBD, including gas flow, dielectric material, surface conductivity, and mesh electrode. Secondly, a chronological literature review is presented, highlighting the development of H-DBD and the …


Sars-Cov-2 Spike Conformation Determines Plasma Neutralizing Activity Elicited By A Wide Panel Of Human Vaccines, John E. Bowen, Young-Jun Park, Cameron Stewart, Jack T. Brown, William K. Sharkey, Alexandra C. Walls, Anshu Joshi, Kumail Ahmed, Asefa Shariq, Najeeha Talat Iqbal Nov 2022

Sars-Cov-2 Spike Conformation Determines Plasma Neutralizing Activity Elicited By A Wide Panel Of Human Vaccines, John E. Bowen, Young-Jun Park, Cameron Stewart, Jack T. Brown, William K. Sharkey, Alexandra C. Walls, Anshu Joshi, Kumail Ahmed, Asefa Shariq, Najeeha Talat Iqbal

Department of Paediatrics and Child Health

Numerous safe and effective coronavirus disease 2019 vaccines have been developed worldwide that use various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S1 subunit relative to postfusion S as compared with vaccines lacking these mutations or natural infection. Prefusion S and S1 antibody binding titers positively and equivalently correlated with neutralizing activity, and depletion of S1-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S1 subunit and that variant cross-neutralization is mediated …


Ultrashort Pulse Laser Filamentation Electrical And Optical Diagnostic Comparison, James E. Wymer Aug 2022

Ultrashort Pulse Laser Filamentation Electrical And Optical Diagnostic Comparison, James E. Wymer

Optical Science and Engineering ETDs

Results presented here examine the effect of changing gas pressure on the radio frequency (RF) emissions of an ultrashort pulse laser filament plasma and how those emissions vary longitudinally in the laser focal region. We use a WR284 rectangular waveguide with a 1.5 cm hole that allows the beam through. A 3.2 GHz microwave signal is emitted in the waveguide, and signals are received through a waveguide-to-coax antenna connected to an HP8470B Schottky diode. By enabling and disabling the 3.2 GHz signal, we measure both the self-emitted RF from a USPL filament and subsequently the degree of attenuation a filament …


Electrothermal Plenum Thruster Simulations Varying Input Pressure And Voltage, Naomi Nicole Ingram May 2022

Electrothermal Plenum Thruster Simulations Varying Input Pressure And Voltage, Naomi Nicole Ingram

Open Access Theses & Dissertations

A radiofrequency electrothermal thruster is designed and simulated to create a low ionization energy plasma from a neutral propellant using a radio-frequency power. With an asymmetrical surface area ratio between the grounded and powered electrode, ion-neutral charge exchange collisions occurring within the propellant result in propellant heating. The Electrothermal Plenum Thruster conducts this propellant heating in an annular plenum chamber in attempt to maximize propellant heating. A software called CFD-ACE+ is utilized to demonstrate the effects of an enhanced sheath from the asymmetrical power coupling arrangement. Two sets of simulations are run to understand how input variables affect the plasma …


Whistler Waves: Modeling And Observations, Daniel Williams Apr 2022

Whistler Waves: Modeling And Observations, Daniel Williams

Doctoral Dissertations and Master's Theses

The thesis presents the results of all the research from the published and in publication process research in the Journal of Geophysical Research [1]. This research focuses on whistler wave ducting events in the equatorial magnetosphere. High-density ducts are the main focus of whistler study in both studies as they are commonly observed by the Van Allen Probe satellites. A three-step procedure based on the analysis of the whistler wave dispersion relation and numerical simulations of the electron magnetohydrodynamics model. We use this model to identify the parallel and perpendicular wave numbers of the “most trapped” wave in an attempt …


Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers Dec 2021

Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers

Doctoral Dissertations

The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear pulse plasma device at Oak Ridge National Laboratory with the purpose of doing the research and development for the heating concepts on the planned full MPEX device. The goal of MPEX is to perform material studies at fusion relevant conditions. To understand the conditions at the material target for performing plasma-material interaction studies the ion temperature and density, the electron temperature and density, and the particle flux and fluence must be known. Impurities within Proto-MPEX can alter the desired conditions at the material target and need to be understood for …


Plasma-Laser Wakefield Acceleration, Jonathan Babu Dec 2021

Plasma-Laser Wakefield Acceleration, Jonathan Babu

Physics

Many texts detailing the derivations and science of Wakefield Acceleration are aimed at graduate and doctorate level scholars, and these may seem intimidating to new physics students. This paper is meant to be an introduction to the nature of plasmas, lasers, laser-plasma interactions, and Laser Wakefield Acceleration (LWFA), with sources given where extra detail may be required. I recognize that this paper is not meant to be an all-encompassing review on the nature of the topics, as these topics are complex and subject of entire textbooks. Instead, I aim to provide an introduction to these topics to a college-level scholar …


Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi May 2021

Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research addressed the amount of electric power required to induce specific changes in lift force using a NACA 2127 airfoil with a chord length of ~28 mm, connected to a micro load cell, in a wind tunnel of 103 square centimeter cross-section. A DBD plasma actuator supplied by a ZVS driven high voltage pulsed DC circuit, operating at a frequency of 17.4 kHz, was utilized for voltages of up to 5000 V. Two configurations of electrode gapping were compared to determine the efficient use of power. The configuration with a gap of ~1 mm between the upstream and downstream …


Investigation Of The Chemical Kinetics In An Atmospheric Cold Plasma Towards Co2 Conversion, Daniel Piatek Aug 2020

Investigation Of The Chemical Kinetics In An Atmospheric Cold Plasma Towards Co2 Conversion, Daniel Piatek

Seton Hall University Dissertations and Theses (ETDs)

Hydrogenation of carbon dioxide (CO2) to methanol (CH3OH) is a promising route for utilization of excess and residual CO2. The conversion of CO to methanol is a well-developed process but the ability to use CO2 as a feed gas still requires high pressures (30-300 atm) to attain conversion. In this work, the hydrogenation of CO2 is explored using H2O as well as H2 in an atmospheric pressure nonthermal (cold) plasma created with a dielectric barrier discharge (DBD) reactor. Different gas mixtures such as argon (Ar) and helium (He) are used to understand their interactions in the process of CO2 hydrogenation. …


Characterization Of A Novel Double Cooled Electrode Dbd Reactor For Ozone Generation, Gustavo Duarte Aug 2020

Characterization Of A Novel Double Cooled Electrode Dbd Reactor For Ozone Generation, Gustavo Duarte

Seton Hall University Dissertations and Theses (ETDs)

The Dielectric Barrier Discharge (DBD) is used to generate atmospheric or higher-pressure non-thermal plasmas and has found various commercial applications such as in industrial large-scale ozone generation. Ozone (O3 ) is a powerful chemical reactant that is used to kill bacteria, to deodorize and to perform water purification. The effectiveness of the DBD reactors depends on the electrode arrangements, gap lengths, dielectric materials, operating gases and feed gas quality to name a few. However, the production of O3 is heat sensitive. In order to prevent O3 destruction thermal cooling of the DBD is needed. The industry approach …


Characterization Of A Plasma Source Simulating Solar Wind Plasma In A Vacuum Chamber, Blake Anthony Folta Jan 2020

Characterization Of A Plasma Source Simulating Solar Wind Plasma In A Vacuum Chamber, Blake Anthony Folta

Masters Theses

"The United States has set an aggressive time line to not only return to the Moon, but also to establish a sustained human presence. In the Apollo missions dust was a significant factor, but the duration of those missions was short so dust and surface charging were problems, but they did not pose an immediate threat. For a long-term mission, these problems instead become incredibly detrimental. Because of this, research needs to be conducted to investigate these phenomena so that mitigation techniques can be developed and tested. To this end, this thesis serves to demonstrate the Gas and Plasma Dynamics …


The Population Densities Of Argon Metastable Levels, Nada Khogeer, Chelsy Gonzalez, Milka Nikolic Apr 2019

The Population Densities Of Argon Metastable Levels, Nada Khogeer, Chelsy Gonzalez, Milka Nikolic

Physics and Astronomy

In this experiment, we used the optical emission spectroscopy (OES) method to obtain the main properties of low temperature Argon plasma. The experiment was sustained in powers and pressures that ranges from 30-100 W and 15-100 mTorr. We used numerical methods for the Argon kinetic model to calculate metastable levels and resonant states for the first excited states in low temperature Argon plasma. By finding the ratio of two spectral lines and finding another ratio from a different upper energy level that goes down to the same two lower energy levels, we can construct a system of two nonlinear equations. …


Evaluation Of X-Ray Spectroscopic Techniques For Determining Temperature And Density In Plasmas, Theodore Scott Lane Jan 2019

Evaluation Of X-Ray Spectroscopic Techniques For Determining Temperature And Density In Plasmas, Theodore Scott Lane

Graduate Theses, Dissertations, and Problem Reports

Temperature and density measurements of plasmas are important for understanding various phenomena. For example, equations of state, most scaling arguments for Inertial Confinement Fusion and laboratory astrophysics all rely upon accurate knowledge of temperature and density. Spectroscopy is a non-invasive technique to measure these quantities. In this work we establish a new spectroscopic technique by using it to determine temperature. We also compare and contrast the capability of two codes, PrismSPECT and ATOMIC, to infer electron density from experimentally acquired spectra via Stark broadening.

We compare and contrast the capability of isoelectronic line ratios and inter-stage line ratios in an …


Nonlinear Waves, Instabilities And Singularities In Plasma And Hydrodynamics, Denis Albertovich Silantyev Aug 2017

Nonlinear Waves, Instabilities And Singularities In Plasma And Hydrodynamics, Denis Albertovich Silantyev

Mathematics & Statistics ETDs

This work concentrates on Langmuir wave filamentation instability in the kinetic regime of plasma and computation of Stokes wave with high precision using conformal maps.

Nonlinear effects are present in almost every area of science as soon as one tries to go beyond the first order approximation. In particular, nonlinear waves emerge in such areas as hydrodynamics, nonlinear optics, plasma physics, quantum physics, etc. The results of this work are related to nonlinear waves in two areas, plasma physics and hydrodynamics, united by concepts of instability, singularity and advanced numerical methods used for their investigation.

The first part of this …


The Impact Of Base Stacking On The Conformations And Electrostatics Of Single-Stranded Dna, Alex Plumridge, Steve P. Meisburger, Kurt Andresen, Lois Pollack Feb 2017

The Impact Of Base Stacking On The Conformations And Electrostatics Of Single-Stranded Dna, Alex Plumridge, Steve P. Meisburger, Kurt Andresen, Lois Pollack

Physics and Astronomy Faculty Publications

Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy …


Laser Shock Wave Assisted Patterning On Niti Shape Memory Alloy Surfaces, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Haluk E. Karaca, Ali O. Er Feb 2017

Laser Shock Wave Assisted Patterning On Niti Shape Memory Alloy Surfaces, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning …


Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson Jan 2017

Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson

Graduate College Dissertations and Theses

The pyrolysis mechanics of Phenolic Impregnated Carbon Ablators (PICA) makes it a valued material for use in thermal protection systems for spacecraft atmospheric re-entry. The present study of the interaction of pyrolysis gases and char with plasma gases in the boundary layer over PICA and its substrate, FiberForm, extends previous work on this topic that has been done in the UVM 30 kW Inductively Coupled Plasma (ICP) Torch Facility. Exposure of these material samples separately to argon, nitrogen, oxygen, air, and carbon dioxide plasmas, and combinations of said test gases provides insight into the evolution of the pyrolysis gases as …


Power And Langmuir Probe Measurements Of H2 Rf Plasma, Alexander A. Stowell May 2016

Power And Langmuir Probe Measurements Of H2 Rf Plasma, Alexander A. Stowell

Macalester Journal of Physics and Astronomy

Methane based gases are often used to produce thin films of biomaterials, such as diamond-like carbon, through Plasma Enhanced Chemical Vapor Deposition. The characterization of the H2 plasma will give a deeper understanding of the physical processes occurring. Understanding these processes could lead to the optimization of the production of these thin films in the future. In this paper, we examine the H2 plasma using a Langmuir probe to gain information on the electron temperature and density of the plasma discharge. We measured electron temperatures of 6eV. Our Langmuir probe data indicates the electron temperature remains constant as …


Dissociative Excitation Of H2 In An Rf Plasma, John Carlson May 2016

Dissociative Excitation Of H2 In An Rf Plasma, John Carlson

Macalester Journal of Physics and Astronomy

Plasma-enhanced chemical vapor deposition is a widely used method for depositing thin films. In order to optimize the properties of the films, it is important to understand the plasma processes that occur during film growth. In this research we use optical emission spectroscopy in order to measure the spectral emission lines of a plasma produced with hydrogen gas. In conjunction with other measurements and modeling, these measurements can provide insight to the electron energy distribution of the plasma.


Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda Jan 2016

Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda

Masters Theses

"When operated in a filamentary mode, a volume dielectric barrier discharge (DBD) is known to produce patterned plasma structures. These structures are currently being explored for reconfigurable metamaterial applications. In this work the presence and intensity of a single filament, within an array of filaments, was controlled by adjusting the voltage to that filament's individual needle electrode. The current, voltage, and time-averaged normalized light intensity were measured while varying the voltage of the needle through a self-biasing resistance. For a 7.5 kV, 3.2 kHz DBD in air, the needle-controlled filament intensity varies from that of the surrounding filaments to zero …


Improving The Efficiency And Resolution Of Time Of Flight (Tof) Mass Spectrometer For Magnetospheric Applications., Zain Abbas Jan 2016

Improving The Efficiency And Resolution Of Time Of Flight (Tof) Mass Spectrometer For Magnetospheric Applications., Zain Abbas

Honors Theses and Capstones

The Earth magnetosphere is the volume of space formed by the Earth magnetic field in response to the flow of plasma from the solar wind. Although the magnetopause shields us from the solar wind there are far more particles that penetrate with energy, and momentum to the Earths magnetosphere and interacts with the Earth’s magnetic field to create various plasmas and currents which shape and couple different regions of magnetosphere. The study of the dynamics of ions in and outside of the magnetosphere is done through mass spectrometer. Over the years, CODIF Ion TOF spectrometer have been used to understand …


Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko Aug 2015

Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Roll-to-roll radio frequency plasma enhanced chemical vapor deposition (R2R RFCVD) is a technique for large-scale synthesis of high quality graphitic nanopetals. Graphitic nanopetals are petal-like graphene structures with remarkable electrical and mechanical properties with major industrial applications such as microsupercapacitors. RFCVD uses a non-equilibrium plasma with high energy electrons to catalyze chemical reactions, induce the creation of free radicals, and promote otherwise high temperature chemistry in a low temperature environment. Understanding how bulk plasma characteristics (particularly, power and number densities) vary with changing reactor parameters is an important step towards optimizing synthesis techniques. In our present work we use the …


Construction And Optimization Of A Tapered Amplifier System For Applications In Ultra-Cold Plasma Research, Ryan Cole Jan 2015

Construction And Optimization Of A Tapered Amplifier System For Applications In Ultra-Cold Plasma Research, Ryan Cole

Honors Theses

The number density of cold atoms confined in a magneto-optical trap (MOT) is critically dependent on the intensity of the lasers used to cool the sample. To generate large optical powers while retaining the practicality of homemade external cavity diode lasers (ECDLs), a tapered amplifier (TA) system was designed and constructed to amplify the output of an existing 780 nm, continuous-wave ECDL. The amplifier’s performance is discussed in terms of its gain and power output. Under standard operating conditions, optical amplification of 12 dB is achieved, with a maximum power output of 0.75 W. The completed amplifier is installed into …


Effects Of Plasma Processing On Secondary Electron Yield Of Niobium Samples, M. Basovic, S. Popovic, M. Tomovic, L. Vuskovic, A. Samolov, F. Cuckov Jan 2015

Effects Of Plasma Processing On Secondary Electron Yield Of Niobium Samples, M. Basovic, S. Popovic, M. Tomovic, L. Vuskovic, A. Samolov, F. Cuckov

Physics Faculty Publications

Impurities deposited on the surface of Nb during both the forming and welding of accelerator cavities add to the imperfections of the sheet metal, which then affects the overall performance of the cavities. This leads to a drop in the Q factor and limits the maximum acceleration gradient achievable per unit length of the cavities. The performance can be improved either by adjusting the fabrication and preparation parameters, or by mitigating the effects of fabrication and preparation techniques used. We have developed the experimental setup to determine Secondary Electron Yield (SEY) from the surface of Nb samples. Our aim is …


Experiment And Results On Plasma Etching Of Srf Cavities, J. Upadhyay, Do Im, J. Peshl, S. Popovic, L. Vuskovic, A. -M. Valente-Feliciano, L. Phillips Jan 2015

Experiment And Results On Plasma Etching Of Srf Cavities, J. Upadhyay, Do Im, J. Peshl, S. Popovic, L. Vuskovic, A. -M. Valente-Feliciano, L. Phillips

Physics Faculty Publications

The inner surfaces of SRF cavities are currently chemically treated (etched or electro polished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically …


Particle Swarms In Confining Geometries, Eric Robert Boomsma Oct 2014

Particle Swarms In Confining Geometries, Eric Robert Boomsma

Open Access Dissertations

The transport of micro- and nano-particles in subsurface fluid deposits is an area of increasing interest due to the rising use of these particles for consumer and industrial purposes. Subsurface particle transport is complicated by the presence of fractures and fracture networks which govern the paths that particles will be able to take. In this thesis, subsurface particle transport will be investigated using particle swarms; collections of hydro-dynamically interacting particles which exhibit group behavior. The effects of fluid viscosity, particle properties, fracture geometry, and fracture aperture on swarm behavior were experimentally investigated. ^ Swarm parameters were examined in time with …


The Magnetopause: Bringing Space Physics Into A Junior Lab, Jim Crumley, Ari Palczewski,, Stephen Kaster Jul 2014

The Magnetopause: Bringing Space Physics Into A Junior Lab, Jim Crumley, Ari Palczewski,, Stephen Kaster

MapCores Faculty Publications

Undergraduate students often have minimal exposure to many subfields
of physics which are active areas of research. Space physics
is an area that is particularly difficult to expose students to since
it builds off of another area that most undergraduates see little of,
plasma physics. The magnetopause is convenient entry point
into space physics, since it can be modeled as a pressure balance, which is
a concept familiar from introductory physics. We use the Earth's
magnetopause as the basis for a lab for junior physics majors. In
the lab students analyze results from a NASA MHD simulation and
data from …


Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar Jan 2014

Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar

Electrical & Computer Engineering Faculty Publications

During the last two decades, research efforts on the application of low temperature plasmas in biology and medicine have positioned nonequilibrium lowtemperature plasmas as a technology that has the potential of revolutionizing healthcare.[1,2] Low temperature plasmas can be applied in direct contact with living tissues to inactivate bacteria,[3] to disinfect wounds and accelerate wound healing,[4] and to induce damage in some cancer cells.[5–11]


Diagnostics Of An O2–He Rf Atmospheric Plasma Discharge By Spectral Emission, Vladimir Milosavljevic, Mick Donegan, Patrick Cullen, Denis Dowling Jan 2014

Diagnostics Of An O2–He Rf Atmospheric Plasma Discharge By Spectral Emission, Vladimir Milosavljevic, Mick Donegan, Patrick Cullen, Denis Dowling

Articles

In this paper optical emission spectroscopy (OES) is used as a Diagnostic technique for the measurement of atomic and molecular spectral emissions generated using a helium rf industrial atmospheric plasma jet system. The OES of neutral atomic spectral lines and molecular bands are investigated over a range of plasma process parameters.
Wavelength resolve optical emission profiles suggest that the emission of helium’s spectral lines shows that the high energy electrons have a larger influence than helium metastables on the overall spectral emission. Furthermore, the experimental data indicates that the use of high helium flow rates, in any confined open air …