Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 59

Full-Text Articles in Plasma and Beam Physics

Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams Nov 2015

Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams

Faculty Scholarship

Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary—but not sufficient—for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae …


Abrupt Change In Neon Discharge Plasma Detected Through Optogalvanic Effects, Xianming Han, Michael Blosser, Prabhakar Misra, Haridass Chandran Oct 2015

Abrupt Change In Neon Discharge Plasma Detected Through Optogalvanic Effects, Xianming Han, Michael Blosser, Prabhakar Misra, Haridass Chandran

Xianming Han

When a laser is tuned between two excited energy levels of a gas in a Direct Current discharge lamp, the discharge current will experience a temporary disturbance lasting tens or hundreds of microseconds known as the optogalvanic effect. We have carried out extensive studies of optogalvanic effects in neon discharge plasmas for transitions at 621.7 nm, 630.5 nm, 638.3 nm, 650.7 nm and 659.9 nm. A nonlinear least-squares Monte Carlo technique has been used to determine the relevant amplitude coefficients, decay rates and the instrumental time constant. We discovered an abrupt change in the neon discharge plasma at a discharge …


Collisional Ionization Of Excited State Neon In A Gas Discharge Plasma, Xianming Han, Verl Wiseheart, Scott Conner, Meng-Chih Su, David Monts Oct 2015

Collisional Ionization Of Excited State Neon In A Gas Discharge Plasma, Xianming Han, Verl Wiseheart, Scott Conner, Meng-Chih Su, David Monts

Xianming Han

We report the first case where it is possible to clearly identify and quantitatively characterize the dominant physical processes contributing to production of the optogalvanic effect (OGE) signal in a discharge plasma. This work concentrates on the simplest case where only two states are involved in the optical transition. The theoretical model with only four parameters is in excellent agreement with the experimentally obtained time-resolved OGE waveforms. The collisional ionization rate in the upper state is twice as fast as that in the lower state although the two states are only separated by 1.94 eV. We conclude that the optogalvanic …


Combining Diffusive Shock Acceleration And Stochastic Particle Energization By Multiple Plasmoids, Parisa Mostafavi Oct 2015

Combining Diffusive Shock Acceleration And Stochastic Particle Energization By Multiple Plasmoids, Parisa Mostafavi

Von Braun Symposium Student Posters

No abstract provided.


Electron Vortices In Photoionization By Circularly Polarized Attosecond Pulses, Jean Marcel Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A. V. Meremianin, Anthony F. Starace Sep 2015

Electron Vortices In Photoionization By Circularly Polarized Attosecond Pulses, Jean Marcel Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A. V. Meremianin, Anthony F. Starace

Anthony F. Starace Publications

Single ionization of He by two oppositely circularly polarized, time-delayed attosecond pulses is shown to produce photoelectron momentum distributions in the polarization plane having helical vortex structures sensitive to the time delay between the pulses, their relative phase, and their handedness. Results are obtained by both ab initio numerical solution of the two-electron time-dependent Schrödinger equation and by a lowest-order perturbation theory analysis. The energy, bandwidth, and temporal duration of attosecond pulses are ideal for observing these vortex patterns.


Secondary Electrohydrodynamic Flow Generated By Corona And Dielectric Barrier Discharges, Mohammadreza Ghazanchaei Sep 2015

Secondary Electrohydrodynamic Flow Generated By Corona And Dielectric Barrier Discharges, Mohammadreza Ghazanchaei

Electronic Thesis and Dissertation Repository

One of the main goals of applied electrostatics engineering is to discover new perspectives in a wide range of research areas. Controlling the fluid media through electrostatic forces has brought new important scientific and industrial applications. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in the field of fluid dynamics. Although numerous EHD applications have been explored and extensively studied so far, most of the works are either experimental studies, which are not capable to explain the in depth physics of the phenomena, or detailed analytical studies, which are not time effective. The focus of this study is …


Simulations Of Hl-Lhc Crab Cavity Noise Using Headtail, Stanley Steeper Sep 2015

Simulations Of Hl-Lhc Crab Cavity Noise Using Headtail, Stanley Steeper

Physics

The High Luminosity Large Hadron Collider (Hi-Lumi LHC) upgrade -- scheduled to be completed by 2025 -- will improve the existing LHC in many ways. One such upgrade is the addition of Crab Cavities (CCs). The CCs are resonant structures that provide strong transverse kicks to the circulating clouds of particles around each interaction region. As such, the CCs result in a head-on collision of the clouds and a large increase in event rate, leading to reduced statistical uncertainty and potentially faster discoveries. However, the CC field will be modulated by phase and amplitude noise which can have detrimental effects …


Optical Emission Spectroscopy Diagnostics Of Cold Plasmas For Food Sterilization, Abhijit Jassem, Michael Lauria, Russell Brayfield Ii, Kevin M. Keener, Allen L. Garner Aug 2015

Optical Emission Spectroscopy Diagnostics Of Cold Plasmas For Food Sterilization, Abhijit Jassem, Michael Lauria, Russell Brayfield Ii, Kevin M. Keener, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

There is a growing need for economical, effective, and safe methods of sterilizing fresh produce. The most common method is a chlorine wash, which is expensive and may introduce carcinogens. High voltage cold atmospheric pressure plasmas are a promising solution that has demonstrated a germicidal effect; however, the responsible chemical mechanisms and reaction pathways are not fully understood. To elucidate this chemistry, we used optical emission spectroscopy to measure the species produced in the plasma generated by a 60 Hz pulsed dielectric barrier discharge in a plastic box containing various fill gases (He, N2, CO2, dry …


Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko Aug 2015

Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Roll-to-roll radio frequency plasma enhanced chemical vapor deposition (R2R RFCVD) is a technique for large-scale synthesis of high quality graphitic nanopetals. Graphitic nanopetals are petal-like graphene structures with remarkable electrical and mechanical properties with major industrial applications such as microsupercapacitors. RFCVD uses a non-equilibrium plasma with high energy electrons to catalyze chemical reactions, induce the creation of free radicals, and promote otherwise high temperature chemistry in a low temperature environment. Understanding how bulk plasma characteristics (particularly, power and number densities) vary with changing reactor parameters is an important step towards optimizing synthesis techniques. In our present work we use the …


Scaling Laws For High-Order-Harmonic Generation With Midinfrared Laser Pulses, M. V. Frolov, N. L. Manakov, Wei-Hao Xiong, Liang-You Peng, J. Burgdörfer, Anthony F. Starace Aug 2015

Scaling Laws For High-Order-Harmonic Generation With Midinfrared Laser Pulses, M. V. Frolov, N. L. Manakov, Wei-Hao Xiong, Liang-You Peng, J. Burgdörfer, Anthony F. Starace

Anthony F. Starace Publications

We derive an analytic expression for thewavelength scaling of the high-order-harmonic generation (HHG) yield induced by midinfrared driving laser fields. It is based on a quasiclassical description of the returning electron wave packet, which is shown to be largely independent of atomic properties. The accuracy of this analytic expression is confirmed by comparison with results of numerical solutions of the time-dependent Schr¨odinger equation for wavelengths in the range of 1.4 μm ≤ λ ≤ 4 μm. We verify the wavelength scaling of the HHG yield found numerically for midinfrared laser fields in a recent paper by Le et al. [


Favorable Target Positions For Intense Laser Acceleration Of Electrons In Hydrogen-Like, Highly-Charged Ions, Liang-Wen Pi, S. X. Hu, Anthony F. Starace Aug 2015

Favorable Target Positions For Intense Laser Acceleration Of Electrons In Hydrogen-Like, Highly-Charged Ions, Liang-Wen Pi, S. X. Hu, Anthony F. Starace

Anthony F. Starace Publications

Classical relativistic Monte Carlo simulations of petawatt laser acceleration of electrons bound initially in hydrogen-like, highly-charged ions show that both the angles and energies of the laser-accelerated electrons depend on the initial ion positions with respect to the laser focus. Electrons bound in ions located after the laser focus generally acquire higher (≈GeV) energies and are ejected at smaller angles with respect to the laser beam. Our simulations assume a tightly-focused linearly-polarized laser pulse with intensity approaching 1022W/cm2. Up to fifth order corrections to the paraxial approximation of the laser field in the focal region are …


Laser-Wakefield Accelerators: Glass-Guiding Benefits, Donald P. Umstadter Jul 2015

Laser-Wakefield Accelerators: Glass-Guiding Benefits, Donald P. Umstadter

Donald P. Umstadter

A main attraction of laser-driven electron accelerators is their absence of cavity walls, which can break down in the presence of intense electric fields. Now it seems that the inclusion of a hollow glass fibre cavity could lead to more efficient acceleration at lower laser intensities. ... Further research will reveal which of the above methods for guiding light will ultimately prove best for future accelerator designs. In any case, although it is perhaps ironic that the relatively old technology of glass waveguides may benefit next-generation accelerators, it is nonetheless satisfying to see such a classic photonic solution come to …


Photodetachment Of A Model Molecular System By An Elliptically Polarized Field, M. V. Frolov, N. L. Manakov, S. S. Marmo, Anthony F. Starace Jul 2015

Photodetachment Of A Model Molecular System By An Elliptically Polarized Field, M. V. Frolov, N. L. Manakov, S. S. Marmo, Anthony F. Starace

Anthony F. Starace Publications

The differential cross section for one-photon molecular detachment by an elliptically polarized field is analyzed for a one-electron molecular model comprised of an electron in the field of two (generally nonequivalent) attractive zero-range potentials (ZRPs) separated by the distance R. A phenomenological parametrization of the photodetachment cross section for a fixed-in-space molecular system in terms of two scalar dynamical parameters is presented and circular dichroism effects are discussed. Analytic results for the dynamical molecular parameters within the ZRP molecular model are used to analyze interference phenomena (including two-center interference) and dichroic effects in the detached electron angular distributions and …


Spectroscopic Characterization Of A Radio-Frequency Argon Plasma Jet Discharge In Ambient Air, Patrick Cullen, Vladimir Milosavljevic Jun 2015

Spectroscopic Characterization Of A Radio-Frequency Argon Plasma Jet Discharge In Ambient Air, Patrick Cullen, Vladimir Milosavljevic

Articles

This study includes a detailed experimental investigation of the spatial and temporal spectroscopic emission of an argon plasma jet discharge. The study is carried out in ambient air and quenching by inflowing air species is considered. The optical emission spectroscopy of neutral atomic spectral lines and molecular bands, over a range of plasma process parameters, is investigated. Wavelength-resolved argon optical emission profiles are used to monitor the electron energy distribution function and the density of argon metastable atoms. The experimental data indicates that the argon flow rate, in a confined open-air plasma discharge, limits the impact of molecular oxygen in …


Electron Transmission Through Micrometer Sized Funnelshaped Tapered Glass Capillaries And Electron Micro-Beam Production, Samanthi Jayamini Wickramarachchi Jun 2015

Electron Transmission Through Micrometer Sized Funnelshaped Tapered Glass Capillaries And Electron Micro-Beam Production, Samanthi Jayamini Wickramarachchi

Dissertations

The prime motivation of this work is to understand the fundamental transmission process of an electron beam through a funnel-shaped capillary taking into account its shape together with the energy, angular and time dependence of the transmitted electrons produce a microsized electron beam. The utilized capillaries had inlet/outlet diameters of 800/16 μm, 800/100 μm and lengths of 35 mm. Considerable transmission of 800 and 1000 eV electrons for tilt angles up to 1.5o and only small transmission for 500 eV electrons was observed for the capillary with the smaller outlet diameter of 16 μm. Incident electrons with energies of …


Optical Control Of Electron Phase Space In Plasma Accelerators With Incoherently Stacked Laser Pulses, Serge Y. Kalmykov, Xavier Davoine, Remi Lehe, Agustin F. Lifschitz, Bradley A. Shadwick May 2015

Optical Control Of Electron Phase Space In Plasma Accelerators With Incoherently Stacked Laser Pulses, Serge Y. Kalmykov, Xavier Davoine, Remi Lehe, Agustin F. Lifschitz, Bradley A. Shadwick

Serge Youri Kalmykov

It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n_0 \sim 10^{19} cm^{-3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35 - 100 kA, time-synchronized quasi-monoenergetic electron bunches. The …


Diatomic Carbon Measurements With Laser-Induced Breakdown Spectroscopy, Michael Jonathan Witte May 2015

Diatomic Carbon Measurements With Laser-Induced Breakdown Spectroscopy, Michael Jonathan Witte

Masters Theses

In this thesis, investigation of well-known carbon Swan spectra is of primary interest. Combustion processes and/or explosion of hydrocarbon fuels cause occurrence of the Swan band system that originates from diatomic carbon. Physical characteristics of low-temperature stars and the interstellar medium can also reveal the Swan bands. The diatomic carbon molecule shows that its lowest rotational levels are sensitive to temperature variation, and higher rotational levels are sensitive to the surrounding gas density and the radiation field. In addition, carbon is a crucial element for life and is the 4th most abundant element; therefore, it is important to ascertain accurately …


Power-Recycled Weak-Value-Based Metrology, Kevin Lyons, Justin Dressel, Andrew N. Jordan, John C. Howell, Paul G. Kwiat Apr 2015

Power-Recycled Weak-Value-Based Metrology, Kevin Lyons, Justin Dressel, Andrew N. Jordan, John C. Howell, Paul G. Kwiat

Mathematics, Physics, and Computer Science Faculty Articles and Research

We improve the precision of the interferometric weak-value-based beam deflection measurement by introducing a power recycling mirror, creating a resonant cavity. This results in all the light exiting to the detector with a large deflection, thus eliminating the inefficiency of the rare postselection. The signal-to-noise ratio of the deflection is itself magnified by the weak value. We discuss ways to realize this proposal, using a transverse beam filter and different cavity designs.


Rescattering Effects In Laser-Assisted Electron-Atom Bremsstrahlung, A. N. Zheltukhin, A. V. Flegel, M. V. Frolov, N. L. Manakov, Anthony F. Starace Mar 2015

Rescattering Effects In Laser-Assisted Electron-Atom Bremsstrahlung, A. N. Zheltukhin, A. V. Flegel, M. V. Frolov, N. L. Manakov, Anthony F. Starace

Anthony F. Starace Publications

Rescattering effects in non-resonant spontaneous laser-assisted electron–atom bremsstrahlung (LABrS) are analyzed within the framework of time-dependent effective-range (TDER) theory. It is shown that high energy LABrS spectra exhibit rescattering plateau structures that are similar to those that are well-known in strong field laser-induced processes as well as those that have been predicted theoretically in laser-assisted collision processes. In the limit of a low-frequency laser field, an analytic description of LABrS is obtained from a rigorous quantum analysis of the exact TDER results for the LABrS amplitude. This amplitude is represented as a sum of factorized terms involving three factors, each …


Dual-Spacecraft Reconstruction Of A Three-Dimensional Magnetic Flux Rope At The Earth's Magnetopause, H. Hasegawa, B. U. Ö. Sonnerup, S. Eriksson, T. K. M. Nakamura Feb 2015

Dual-Spacecraft Reconstruction Of A Three-Dimensional Magnetic Flux Rope At The Earth's Magnetopause, H. Hasegawa, B. U. Ö. Sonnerup, S. Eriksson, T. K. M. Nakamura

Dartmouth Scholarship

We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that a …


Lightning-Based Search For Tgfs In The Fermi Gamma-Ray Burst Monitor, Kareem Omar Jan 2015

Lightning-Based Search For Tgfs In The Fermi Gamma-Ray Burst Monitor, Kareem Omar

Summer Community of Scholars Posters (RCEU and HCR Combined Programs)

No abstract provided.


The Influence Of Charge And Magnetic Order On Polaron And Acoustic Phonon Dynamics In Lufe2O4, J. Lee, S. A. Trugman, C. L. Zhang, D. Talbayev, Xiaoshan Xu, S.-W. Cheong, D. A. Yarotski, A. J. Taylor, R. P. Prasankumar Jan 2015

The Influence Of Charge And Magnetic Order On Polaron And Acoustic Phonon Dynamics In Lufe2O4, J. Lee, S. A. Trugman, C. L. Zhang, D. Talbayev, Xiaoshan Xu, S.-W. Cheong, D. A. Yarotski, A. J. Taylor, R. P. Prasankumar

Nebraska Center for Materials and Nanoscience: Faculty Publications

Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polaron dynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe2O4. We experimentally observed the influence of magnetic order on polaron dynamics. We also observed a correlation between charge order and the amplitude of the acoustic phonon oscillations, due to photoinduced changes in the lattice constant that originate from the photoexcited electrons. This provides insight into the general behavior of coherent acoustic phonon oscillations in charge-ordered materials.


Evaluation Of Magnesium As A Hall Thruster Propellant, Mark A. Hopkins Jan 2015

Evaluation Of Magnesium As A Hall Thruster Propellant, Mark A. Hopkins

Dissertations, Master's Theses and Master's Reports - Open

In this study, the use of magnesium as a Hall thruster propellant was evaluated. A xenon Hall thruster was modified such that magnesium propellant could be loaded into the anode and use waste heat from the thruster discharge to drive the propellant vaporization. A control scheme was developed, which allowed for precise control of the mass flow rate while still using plasma heating as the main mechanism for evaporation. The thruster anode, which also served as the propellant reservoir, was designed such that the open area was too low for sufficient vapor flow at normal operating temperatures (i.e. plasma heating …


Charged Particle Dynamics In The Magnetic Field Of A Long Straight Current-Carrying Wire, M. Fatuzzo, A. Prentice, T. Toepker Jan 2015

Charged Particle Dynamics In The Magnetic Field Of A Long Straight Current-Carrying Wire, M. Fatuzzo, A. Prentice, T. Toepker

Faculty Scholarship

The article discusses the concept behind motion of a charged particle in a non-uniform filed of a wire carrying current. Topics discussed include possible types of motion in a current carrying field, vector analysis of velocity and magnetic field of the particle and Coupled differential equations.


Construction And Optimization Of A Tapered Amplifier System For Applications In Ultra-Cold Plasma Research, Ryan Cole Jan 2015

Construction And Optimization Of A Tapered Amplifier System For Applications In Ultra-Cold Plasma Research, Ryan Cole

Honors Theses

The number density of cold atoms confined in a magneto-optical trap (MOT) is critically dependent on the intensity of the lasers used to cool the sample. To generate large optical powers while retaining the practicality of homemade external cavity diode lasers (ECDLs), a tapered amplifier (TA) system was designed and constructed to amplify the output of an existing 780 nm, continuous-wave ECDL. The amplifier’s performance is discussed in terms of its gain and power output. Under standard operating conditions, optical amplification of 12 dB is achieved, with a maximum power output of 0.75 W. The completed amplifier is installed into …


Compact Source Of Narrowband And Tunable X-Rays For Radiography, Sudeep Banerjee, Shouyuan Chen, Nathan D. Powers, Daniel Haden, Cheng Liu, Grigory V. Golovin, Jun Zhang, Baozhen Zhao, S. Clarke, Sara Pozzi, Jack Silano, H. Karwowski, Donald Umstadter Jan 2015

Compact Source Of Narrowband And Tunable X-Rays For Radiography, Sudeep Banerjee, Shouyuan Chen, Nathan D. Powers, Daniel Haden, Cheng Liu, Grigory V. Golovin, Jun Zhang, Baozhen Zhao, S. Clarke, Sara Pozzi, Jack Silano, H. Karwowski, Donald Umstadter

Donald Umstadter Publications

We discuss the development of a compact X-ray source based on inverse-Compton scattering with a laser-driven electron beam. This source produces a beam of high-energy X-rays in a narrow cone angle (5–10 mrad), at a rate of 108 photons-s_1. Tunable operation of the source over a large energy range, with energy spread of ~50%, has also been demonstrated. Photon energies >10 MeV have been obtained. The narrowband nature of the source is advantageous for radiography with low dose, low noise, and minimal shielding.


All-Laser-Driven Thomson X-Ray Sources, Donald Umstadter Jan 2015

All-Laser-Driven Thomson X-Ray Sources, Donald Umstadter

Donald Umstadter Publications

We discuss the development of a new generation of accelerator-based hard X-ray sources driven exclusively by laser light. High-intensity laser pulses serve the dual roles: first, accelerating electrons by laser-driven plasma wakefields, and second, generating X-rays by inverse Compton scattering. Such all-laser-driven X-rays have recently been demonstrated to be energetic, tunable, relatively narrow in bandwidth, short pulsed and well collimated. Such characteristics, especially from a compact source, are highly advantageous for numerous advanced X-ray applications—in metrology, biomedicine, materials, ultrafast phenomena, radiology and fundamental physics.


Numerical Simulations Of Reacting Flow In An Inductively Coupled Plasma Torch, Maximilian Dougherty Jan 2015

Numerical Simulations Of Reacting Flow In An Inductively Coupled Plasma Torch, Maximilian Dougherty

Graduate College Dissertations and Theses

In the design of a thermal protection system for atmospheric entry, aerothermal heating presents a major impediment to efficient heat shield design. Recombination of atomic species in the boundary layer results in highly exothermic surface-catalyzed recombination reactions and an increase in the heat flux experienced at the surface. The degree to which these reactions increase the surface heat flux is partly a function of the heat shield material. Characterization of the catalytic behavior of these materials takes place in experimental facilities, however there is a dearth of detailed computational models for the fluid dynamic and chemical behavior of such facilities. …


Effects Of Crab Cavities Multipole Content In An Electron-Ion Collider, A. Castilla, V. S. Morozov, T. Satogata, J. R. Delayen Jan 2015

Effects Of Crab Cavities Multipole Content In An Electron-Ion Collider, A. Castilla, V. S. Morozov, T. Satogata, J. R. Delayen

Physics Faculty Publications

The impact on the beam dynamics of the Medium Energy Electron-Ion Colider (MEIC) due to the multipole content of the 750 MHz crab cavity was studied using thin multipole elements for 6D phase space particle tracking in ELEGANT. Target values of the sextupole component for the cavity’s field expansion were used to perform preliminary studies on the proton beam stability when compared to the case of pure dipole content of the rf kicks. Finally, important effects on the beam sizes due to non-linear components of the crab cavities’ fields were identified and some criteria for their future study were proposed.


Spark Discharge Coupled Laser Multicharged Ion Source, Md. Haider A. Shaim, Hani E. Elsayed-Ali Jan 2015

Spark Discharge Coupled Laser Multicharged Ion Source, Md. Haider A. Shaim, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

A spark discharge is coupled to a laser multicharged ion source to enhance ion generation. The laser plasma triggers a spark discharge with electrodes located in front of the ablated target. For an aluminum target, the spark discharge results in significant enhancement in the generation of multicharged ions along with higher charge states than observed with the laser source alone. When a Nd:YAG laser pulse (wavelength 1064 nm, pulse width 7.4 ns, pulse energy 72 mJ, laser spot area on target 0.0024 cm2) is used, the total multicharged ions detected by a Faraday cup is 1.0 nC with …