Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 31

Full-Text Articles in Plasma and Beam Physics

Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch Jan 2022

Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch

Masters Theses

"This research presents studies of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X's USim® software to quantify the nozzle's capabilities. A2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T's Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were …


One Dimensional Study Of Magnetoplasmadynamic Thrusters For A Potential New Class Of Heavy Ion Drivers For Plasma Jet Driven Magnetoinertial Fusion, Patrick M. Brown Jun 2021

One Dimensional Study Of Magnetoplasmadynamic Thrusters For A Potential New Class Of Heavy Ion Drivers For Plasma Jet Driven Magnetoinertial Fusion, Patrick M. Brown

Theses and Dissertations

Plasma Jet Driven Magnetoinertial Fusion (PJMIF) requires high velocity heavy ion drivers in order to compress a magnetized target to fusion conditions. Previous work with heavy ion drivers has revealed sub-par accelerations due to plasma instabilities; thus, it is necessary to investigate new methods of heavy ion plasma acceleration. One such method is Magnetoplasmadynamic (MPD) thrusters. Past studies of these thrusters have been conducted at an initial temperature at or below the energy of full ionization. Here MPD thrusters are investigated using a Godunov type MHD solver with a Harten-Lax van Leer-D (HLLD) flux solving scheme assuming the plasma is …


Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi May 2021

Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research addressed the amount of electric power required to induce specific changes in lift force using a NACA 2127 airfoil with a chord length of ~28 mm, connected to a micro load cell, in a wind tunnel of 103 square centimeter cross-section. A DBD plasma actuator supplied by a ZVS driven high voltage pulsed DC circuit, operating at a frequency of 17.4 kHz, was utilized for voltages of up to 5000 V. Two configurations of electrode gapping were compared to determine the efficient use of power. The configuration with a gap of ~1 mm between the upstream and downstream …


Impendance Probe Payload Development For Space-Based Joint Service Collaboration, Brian T. Kay Mar 2021

Impendance Probe Payload Development For Space-Based Joint Service Collaboration, Brian T. Kay

Theses and Dissertations

Collaborations utilizing small spacecraft in near earth orbit between the U. S. Coast Guard Academy (CGA), Naval Research Lab (NRL), the U. S. Naval Academy (USNA), and the Air Force Institute of Technology (AFIT) have initiated scientific and engineering space-based experiments. Sourced opportunities like the VaSpace ThinSat missions have provided a platform for payload, sensor, and experiment development that would have otherwise been resource prohibitive. We have constructed an impedance probe payload derived from the existing ‘Space PlasmA Diagnostic suitE’ (SPADE) mission operating from NASA’s International Space Station. Currently both space and laboratory plasmas are investigated with AC impedance measurements …


Laser Shock Peening Pressure Impulse Determination Via Empirical Data-Matching With Optimization Software, Colin C. Engebretsen Mar 2020

Laser Shock Peening Pressure Impulse Determination Via Empirical Data-Matching With Optimization Software, Colin C. Engebretsen

Theses and Dissertations

Laser shock peening (LSP) is a form of work hardening by means of laser induced pressure impulse. LSP imparts compressive residual stresses which can improve fatigue life of metallic alloys for structural use. The finite element modeling (FEM) of LSP is typically done by applying an assumed pressure impulse, as useful experimental measurement of this pressure impulse has not been adequately accomplished. This shortfall in the field is a current limitation to the accuracy of FE modeling, and was addressed in the current work. A novel method was tested to determine the pressure impulse shape in time and space by …


Three-Dimensional Measurement Of Electron Temperature And Density In A Split Ring Resonator Microplasma, Neil Laya Jan 2020

Three-Dimensional Measurement Of Electron Temperature And Density In A Split Ring Resonator Microplasma, Neil Laya

Summer Community of Scholars Posters (RCEU and HCR Combined Programs)

No abstract provided.


Characterization Of A Plasma Source Simulating Solar Wind Plasma In A Vacuum Chamber, Blake Anthony Folta Jan 2020

Characterization Of A Plasma Source Simulating Solar Wind Plasma In A Vacuum Chamber, Blake Anthony Folta

Masters Theses

"The United States has set an aggressive time line to not only return to the Moon, but also to establish a sustained human presence. In the Apollo missions dust was a significant factor, but the duration of those missions was short so dust and surface charging were problems, but they did not pose an immediate threat. For a long-term mission, these problems instead become incredibly detrimental. Because of this, research needs to be conducted to investigate these phenomena so that mitigation techniques can be developed and tested. To this end, this thesis serves to demonstrate the Gas and Plasma Dynamics …


Characterization Of A Green Electric Solid Propellant For Electric Propulsion, Matthew Scott Glascock Jan 2019

Characterization Of A Green Electric Solid Propellant For Electric Propulsion, Matthew Scott Glascock

Doctoral Dissertations

"Electric solid propellants are advanced solid chemical rocket propellants that can be controlled (ignited, throttled and extinguished) through the application and removal of an electric current. These propellants are also being considered for use in ablative pulsed plasma thruster and multimode systems. In this work, the behavior and performance of a novel green electric solid propellant operating in an electrothermal ablation-fed pulsed plasma thruster was investigated. Using an inverted pendulum micro-Newton thrust stand, the impulse bit and specific impulse of the device using the electric solid propellant were measured for short-duration and long-duration runs to end-of-life, at energy levels of …


Application Of Spectral Solution And Neural Network Techniques In Plasma Modeling For Electric Propulsion, Joseph R. Whitman Sep 2018

Application Of Spectral Solution And Neural Network Techniques In Plasma Modeling For Electric Propulsion, Joseph R. Whitman

Theses and Dissertations

A solver for Poisson's equation was developed using the Radix-2 FFT method first invented by Carl Friedrich Gauss. Its performance was characterized using simulated data and identical boundary conditions to those found in a Hall Effect Thruster. The characterization showed errors below machine-zero with noise-free data, and above 20% noise-to-signal strength, the error increased linearly with the noise. This solver can be implemented into AFRL's plasma simulator, the Thermophysics Universal Research Framework (TURF) and used to quickly and accurately compute the electric field based on charge distributions. The validity of a machine learning approach and data-based complex system modeling approach …


Developing Computational Models For Pulsed-Inductive Plasma Formation, Zachary Aaron Gill Jan 2018

Developing Computational Models For Pulsed-Inductive Plasma Formation, Zachary Aaron Gill

Masters Theses

"Pulsed-inductive discharges are a common method of producing a plasma. They provide a mechanism for quickly and efficiently generating a large volume of plasma for rapid use and are seen in applications including propulsion, fusion power, and high-power lasers. However, some common designs see a delayed response time due to the plasma forming when the magnitude of the magnetic field in the device is at a minimum. New designs are difficult to evaluate due to the amount of time needed to construct a new geometry and the high monetary cost of changing the power generation circuit. To more quickly evaluate …


Building Miniature-Sized Ion Thruster Using Split Ring Resonator (Srr), Toyofumi Yamaguchi Jan 2017

Building Miniature-Sized Ion Thruster Using Split Ring Resonator (Srr), Toyofumi Yamaguchi

Summer Community of Scholars Posters (RCEU and HCR Combined Programs)

No abstract provided.


Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson Jan 2017

Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson

Graduate College Dissertations and Theses

The pyrolysis mechanics of Phenolic Impregnated Carbon Ablators (PICA) makes it a valued material for use in thermal protection systems for spacecraft atmospheric re-entry. The present study of the interaction of pyrolysis gases and char with plasma gases in the boundary layer over PICA and its substrate, FiberForm, extends previous work on this topic that has been done in the UVM 30 kW Inductively Coupled Plasma (ICP) Torch Facility. Exposure of these material samples separately to argon, nitrogen, oxygen, air, and carbon dioxide plasmas, and combinations of said test gases provides insight into the evolution of the pyrolysis gases as …


Particle Modeling Of Non-Equilibrium Field Emission Driven Rf Microplasmas, Siva Sashank Tholeti Aug 2016

Particle Modeling Of Non-Equilibrium Field Emission Driven Rf Microplasmas, Siva Sashank Tholeti

Open Access Dissertations

Non-equilibrium microplasmas at atmospheric pressures have been investigated for active flow control, micropropulsion and electronic display applications to name a few. The operational voltages for these microplasmas are on the order of kilovolts. When the electric field at the electrodes reaches GV/m or tens of GV/m either due to reduced interelectrode spacing and surface irregularities or due to carefully designed nanostructures on the electrodes, quantum processes such as field emission and field ionization come into effect. These can potentially reduce the operational voltages of microplasma devices by an order of magnitude. Due to the rarefied and non-equilibrium nature of these …


Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda Jan 2016

Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda

Masters Theses

"When operated in a filamentary mode, a volume dielectric barrier discharge (DBD) is known to produce patterned plasma structures. These structures are currently being explored for reconfigurable metamaterial applications. In this work the presence and intensity of a single filament, within an array of filaments, was controlled by adjusting the voltage to that filament's individual needle electrode. The current, voltage, and time-averaged normalized light intensity were measured while varying the voltage of the needle through a self-biasing resistance. For a 7.5 kV, 3.2 kHz DBD in air, the needle-controlled filament intensity varies from that of the surrounding filaments to zero …


Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko Aug 2015

Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Roll-to-roll radio frequency plasma enhanced chemical vapor deposition (R2R RFCVD) is a technique for large-scale synthesis of high quality graphitic nanopetals. Graphitic nanopetals are petal-like graphene structures with remarkable electrical and mechanical properties with major industrial applications such as microsupercapacitors. RFCVD uses a non-equilibrium plasma with high energy electrons to catalyze chemical reactions, induce the creation of free radicals, and promote otherwise high temperature chemistry in a low temperature environment. Understanding how bulk plasma characteristics (particularly, power and number densities) vary with changing reactor parameters is an important step towards optimizing synthesis techniques. In our present work we use the …


Numerical Simulations Of Reacting Flow In An Inductively Coupled Plasma Torch, Maximilian Dougherty Jan 2015

Numerical Simulations Of Reacting Flow In An Inductively Coupled Plasma Torch, Maximilian Dougherty

Graduate College Dissertations and Theses

In the design of a thermal protection system for atmospheric entry, aerothermal heating presents a major impediment to efficient heat shield design. Recombination of atomic species in the boundary layer results in highly exothermic surface-catalyzed recombination reactions and an increase in the heat flux experienced at the surface. The degree to which these reactions increase the surface heat flux is partly a function of the heat shield material. Characterization of the catalytic behavior of these materials takes place in experimental facilities, however there is a dearth of detailed computational models for the fluid dynamic and chemical behavior of such facilities. …


Pulsed Inductive Plasma Studies By Spectroscopy And Internal Probe Methods, Warner C. Meeks Jan 2015

Pulsed Inductive Plasma Studies By Spectroscopy And Internal Probe Methods, Warner C. Meeks

Doctoral Dissertations

The broad effort of the Missouri Plasmoid Experiment is to elucidate the energy conversion processes in a pulsed inductive discharge due to the presence of plasma. The test article is a 440 to 490 kHz theta-pinch (or solenoidal) geometry coil with a stored energy of around 80 joules. In this work experimental hydrogen, helium, argon and xenon data at back-fill pressures of 10 to 100 mTorr (1.3 to 133.3 Pa) are obtained and interpreted. Spectral and internal probe studies were performed on MPX Mk.I and Mk.II devices, respectively. IR spectra were acquired in the Mk.I device for argon and xenon. …


Feasibility Analysis Of Large Length-Scale Thermocapillary Flow Experiment For The International Space Station, Samantha Jean Alberts Apr 2014

Feasibility Analysis Of Large Length-Scale Thermocapillary Flow Experiment For The International Space Station, Samantha Jean Alberts

Open Access Theses

The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


Beamed Energy For Ablative Propulsion In Near Earth Space, Grant Bergstue Oct 2011

Beamed Energy For Ablative Propulsion In Near Earth Space, Grant Bergstue

Von Braun Symposium Student Posters

No abstract provided.


Magnetic Field Mapping In The Plasmoid Thruster Experiment (Ptx), Coby W. Mccolgin Oct 2011

Magnetic Field Mapping In The Plasmoid Thruster Experiment (Ptx), Coby W. Mccolgin

Von Braun Symposium Student Posters

No abstract provided.


Plasma Jet Magneto Inertial Fusion Thruster Concept, Richard Hatcher Oct 2011

Plasma Jet Magneto Inertial Fusion Thruster Concept, Richard Hatcher

Von Braun Symposium Student Posters

No abstract provided.


Mission Analysis And Design For Space Based Inter-Satellite Laser Power Beaming, Nicholas M. Keller Mar 2010

Mission Analysis And Design For Space Based Inter-Satellite Laser Power Beaming, Nicholas M. Keller

Theses and Dissertations

This research effort develops an interdisciplinary design tool to optimize an orbit for the purpose of wirelessly beaming power from the International Space Stations (ISS) Japanese Experimental Module Exposed Facility (JEM/EF) to a target satellite. For the purpose of this initiative, the target satellite will be referred to as FalconSAT6, a reference to the proposed follow-on satellite to the U.S. Air Force Academy’s (USAFA) FalconSAT5 program. The USAFA FalconSAT program provides cadets an opportunity to design, analyze, build, test and operate small satellites to conduct Department of Defense (DoD) space missions. The tool developed for this research is designed to …


Characterization Of Microwave Cavity Discharges In A Supersonic Flow, Dareth Janette Drake Apr 2009

Characterization Of Microwave Cavity Discharges In A Supersonic Flow, Dareth Janette Drake

Physics Theses & Dissertations

A partially ionized gas is referred to as either a plasma or a discharge depending on the degree of ionization. The term discharge is usually applied to a weakly ionized gas, i.e. mostly neutrals, where as a plasma usually has a larger degree of ionization. To characterize a discharge the plasma parameters, such as the rotational temperature, vibrational temperature, and electron density, must be determined. Detailed characterization of supersonic flowing discharges is important to many applications in aerospace and aerodynamics. One application is the use of plasma-assisted hydrogen combustion devices to aid in supersonic combustion. In conditions close to the …


Hypersonic Boundary Layer Receptivity To Acoustic Disturbances Over Cones, Kursat Kara Jan 2008

Hypersonic Boundary Layer Receptivity To Acoustic Disturbances Over Cones, Kursat Kara

Mechanical & Aerospace Engineering Theses & Dissertations

The receptivity mechanisms of hypersonic boundary layers to free stream acoustic disturbances are studied using both linear stability theory (LST) and direct numerical simulations (DNS). A computational code is developed for numerical simulation of steady and unsteady hypersonic flow over cones by combining a fifth-order weighted essentially non-oscillatory (WENO) scheme with third-order total-variation-diminishing (TVD) Runge-Kutta method. Hypersonic boundary layer receptivity to free-stream acoustic disturbances in slow and fast modes over 5-degree, half-angle blunt cones and wedges are numerically investigated. The free-stream Mach number is 6.0, and the unit Reynolds number is 7.8×106/ft. Both the steady and unsteady solutions are obtained …


Fluorescence Imaging Study Of Free And Impinging Supersonic Jets: Jet Structure And Turbulent Transition, Jennifer Ann Inman Jan 2007

Fluorescence Imaging Study Of Free And Impinging Supersonic Jets: Jet Structure And Turbulent Transition, Jennifer Ann Inman

Dissertations, Theses, and Masters Projects

A series of experiments into the behavior of underexpanded jet flows has been conducted at NASA Langley Research Center. This work was conducted in support of the Return to Flight effort following the loss of the Columbia. The tests involved simulating flow through a hypothetical breach in the leading edge of the Space Shuttle Orbiter along its reentry trajectory, with the goal of generating a data set with which other researchers can test and validate computational modeling tools. Two nozzles supplied with high-pressure gas were used to generate axisymmetric underexpanded jets exhausting into a low-pressure chamber. These nozzles had exit …


An Experimental Study Of A Pulsed Dc Plasma Flow Control Actuator, Jennifer D. Wall Jun 2006

An Experimental Study Of A Pulsed Dc Plasma Flow Control Actuator, Jennifer D. Wall

Theses and Dissertations

An experiment on the effects of a pulsed DC plasma actuator on a separated flow in a low speed wind tunnel was conducted. The actuator consisted of two asymmetric copper electrodes oriented normal to the flow separated by a dielectric barrier and mounted on a flat plate in the center of the tunnel. A contoured insert was constructed and used to create an adverse pressure gradient in the test section comparable to a Pak-B low pressure turbine blade distribution. Suction was applied from the upper wall to induce separation along the flat plate over the electrodes. The DC power supply …


Spatially-Resolved Temperature Diagnostic For Supersonic Flow Using Cross-Beam Doppler-Limited Laser Saturation Spectroscopy, Grady T. Phillips Mar 2006

Spatially-Resolved Temperature Diagnostic For Supersonic Flow Using Cross-Beam Doppler-Limited Laser Saturation Spectroscopy, Grady T. Phillips

Theses and Dissertations

Optical techniques for measuring the temperature in three-dimensional supersonic reactive flows have typically depended on lineshape measurements using single-beam laser absorption spectroscopy. However, absorption over extended path lengths in flows with symmetric, turbulent eddies can lead to systematically high extracted temperatures due to Doppler shifts resulting from flow along the absorption path. To eliminate these problems, Cross-Beam Saturation Absorption Spectroscopy (CBSAS) and Cross-Beam Inter-Modulated Fluorescence (CBIMF) have been developed which utilize two crossed and nearly copropogating laser beams.to record the spectral signal of an I2 ro-vibrational line in a small three-dimensional volume using a tunable CW dye laser. Temperature …


Macroscopic Computational Model Of Dielectric Barrier Discharge Plasma Actuators, Timothy R. Klein Feb 2006

Macroscopic Computational Model Of Dielectric Barrier Discharge Plasma Actuators, Timothy R. Klein

Theses and Dissertations

Recent progress in the generation and sustainment of gas discharges at atmospheric pressure has energized research in the field of plasma-aerodynamics. Plasma actuators are promising devices that achieve flow control with no moving parts, do not alter the airfoil shape and place no parts in the flow. The operation of a plasma actuator is examined using a macroscopic (force and power addition) computational fluid dynamic model of a dielectric barrier discharge, DBD, in Fluent. A parametric approach is adopted to survey the range of requisite magnitudes of momentum and energy delivered to the flow field and to identify the effects …


Simulation Of Inviscid Multi-Species Plasma Flow, Alexandre Martin, Marcelo Reggio, Jean-Yves Trépanier May 2001

Simulation Of Inviscid Multi-Species Plasma Flow, Alexandre Martin, Marcelo Reggio, Jean-Yves Trépanier

Alexandre Martin

A multi-species solver for plasma at thermodynamical equilibrium is developed. A numerical scheme, based on Roe's, is implemented with some modification regarding the average quantities. A perfect gas treatment is carried out for validations, and a quasi-real gas treatment is also presented. The latter takes into account the changes in the composition of the gas caused by fluctuations in temperature and density.