Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Discipline
Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 131

Full-Text Articles in Optics

Multiscale Imaging Of The Mouse Cortex Using Two-Photon Microscopy And Wide-Field Illumination, Jonathan Richard Bumstead Dec 2017

Multiscale Imaging Of The Mouse Cortex Using Two-Photon Microscopy And Wide-Field Illumination, Jonathan Richard Bumstead

McKelvey School of Engineering Theses & Dissertations

The mouse brain can be studied over vast spatial scales ranging from microscopic imaging of single neurons to macroscopic measurements of hemodynamics acquired over the majority of the mouse cortex. However, most neuroimaging modalities are limited by a fundamental trade-off between the spatial resolution and the field-of-view (FOV) over which the brain can be imaged, making it difficult to fully understand the functional and structural architecture of the healthy mouse brain and its disruption in disease. My dissertation has focused on developing multiscale optical systems capable of imaging the mouse brain at both microscopic and mesoscopic spatial scales, specifically addressing …


Structured Illumination Diffuse Optical Tomography For Mouse Brain Imaging, Matthew Reisman Dec 2017

Structured Illumination Diffuse Optical Tomography For Mouse Brain Imaging, Matthew Reisman

Arts & Sciences Electronic Theses and Dissertations

As advances in functional magnetic resonance imaging (fMRI) have transformed the study of human brain function, they have also widened the divide between standard research techniques used in humans and those used in mice, where high quality images are difficult to obtain using fMRI given the small volume of the mouse brain. Optical imaging techniques have been developed to study mouse brain networks, which are highly valuable given the ability to study brain disease treatments or development in a controlled environment. A planar imaging technique known as optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional …


Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner Dec 2017

Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner

Graduate Theses and Dissertations

This thesis presents the free-space measurements of a periodic metamaterial structure. The metamaterial unit cell consists of two dielectric sheets intersecting at 90 degrees. The dielectric is a polyetherimide-based material 0.001” thick. Each sheet has a copper capacitively-loaded loop (CLL) structure on the front and a cut-wire structure on the back. Foam material is used to support the unit cells. The unit cell repeats 40 times in the x-direction, 58 times in the y-direction and 5 times in the z-direction. The sample measures 12” × 12” × 1” in total. We use a free-space broadband system comprised of a pair …


Energy From Active Galactic Nuclei And The Effects On Host Spiral Galaxies, Amanda Schilling Dec 2017

Energy From Active Galactic Nuclei And The Effects On Host Spiral Galaxies, Amanda Schilling

Graduate Theses and Dissertations

I have investigated the energy output of active galactic nuclei (AGN) in order to understand how these objects evolve and the impact they may have on host galaxies. First, I looked at a sample of 96 AGN at redshifts $z \sim 2, 3,$ and $4$ which have imaging and thus luminosity measurements in the $griz$ and $JHK$ observed wavebands. For these galaxies, I have co-epochal data across those bands which accounted for variability in AGN luminosity. I used the luminosity measurements in the five bands to construct spectral energy distributions (SED) in the emitted optical-UV bands for each AGN. I …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov Dec 2017

Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

In target-in-the-loop laser beam projection scenarios typical of remote sensing, directed energy, and adaptive optics applications, a transmitted laser beam propagates through an optically inhomogeneous medium toward a target, scatters off the target’s rough surface, and returns back to the transceiver plane. Coherent beam scattering off the randomly rough surface results in strong speckle modulation in the transceiver plane. This speckle modulation has been a long-standing challenge that limits performance of remote sensing, active imaging, and adaptive optics techniques. Using physics-based models of laser beam scattering off a randomly rough surface, we show that received speckle-field spatial and temporal characteristics …


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Dec 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window.

The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video …


Power-Law Schell-Model Sources, Milo W. Hyde Iv Nov 2017

Power-Law Schell-Model Sources, Milo W. Hyde Iv

Faculty Publications

A new type of Schell-model source is developed that has a spectral degree of coherence, or spatial power spectrum, which is described by a power-law function. These power-law sources generally produce cusped, or peaked far-zone spectral density patterns making them potentially useful in directed energy applications. The spectral degrees of coherence, spatial power spectra, and spatial coherence radii for power-law sources are derived and discussed. Two power-law sources are then synthesized in the laboratory using a liquid crystal spatial light modulator. The experimental spectral densities are compared to the corresponding theoretical predictions to serve as a proof of concept.


Application Of Metamaterials To Rf Energy Harvesting And Infrared Photodetection, Clayton M. Fowler Nov 2017

Application Of Metamaterials To Rf Energy Harvesting And Infrared Photodetection, Clayton M. Fowler

USF Tampa Graduate Theses and Dissertations

Techniques for adapting metamaterials for the improvement of RF energy harvesting and infrared photodetection are demonstrated using experimental and computer simulation methods. Two methods for RF energy harvesting are experimentally demonstrated and supported by computer simulation. In the first method, a metamaterial perfect absorber (MPA) is made into a rectenna capable of harvesting RF energy and delivering power to a load by soldering Schottky diodes onto connected split ring resonator (SRR) structures composing the planar metasurface of the perfect absorber. The metamaterial rectenna is accompanied by a ground plane placed parallel to it, which forms a Fabry-Perot cavity between the …


Electromagnetic Resonant Scattering In Layered Media With Fabrication Errors, Emily Anne Mchenry Nov 2017

Electromagnetic Resonant Scattering In Layered Media With Fabrication Errors, Emily Anne Mchenry

LSU Doctoral Dissertations

In certain layered electromagnetic media, one can construct a waveguide that supports a harmonic electromagnetic field at a frequency that is embedded in the continuous spectrum. When the structure is perturbed, this embedded eigenvalue moves into the complex plane and becomes a “complex resonance” frequency. The real and imaginary parts of this complex frequency have physical meaning. They lie behind anomalous scattering behaviors known collectively as “Fano resonance”, and people are interested in tuning them to specific values in optical devices. The mathematics involves spectral theory and analytic perturbation theory and is well understood [16], at least on a theoretical …


Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov Nov 2017

Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

A laser beam propagation model that accounts for the joint effect of atmospheric turbulence and refractivity is introduced and evaluated through numerical simulations. In the numerical analysis of laser beam propagation, refractive index inhomogeneities along the atmospheric propagation path were represented by a combination of the turbulence-induced random fluctuations described in the framework of classical Kolmogorov turbulence theory and large-scale refractive index variations caused by the presence of an inverse temperature layer. The results demonstrate that an inverse temperature layer located in the vicinity of a laser beam’s propagation path may strongly impact the laser beam statistical characteristics including the …


Faraday-Talbot Effect From A Circular Array Of Pillars, Jessica J. Pilgram Nov 2017

Faraday-Talbot Effect From A Circular Array Of Pillars, Jessica J. Pilgram

Physics

When an oil bath is vertically oscillating with an acceleration above some critical value, known as the Faraday threshold, the bath surface becomes unstable and nonlinear standing wave patterns emerge. One phenomenon that has been observed above the Faraday threshold is the formation of Faraday-Talbot carpets, resulting from near-field diffraction. The optical Talbot effect occurs when a monochromatic wave passes through a diffraction grating. In the near-field, the formation of self- images is observed at integer multiples of what is known as the Talbot length. These two-dimensional patterns have various applications including X-ray imaging and atom and particle trapping. Two- …


The Simulation, Design, And Fabrication Of Optical Filters, John-Michael Juneau Nov 2017

The Simulation, Design, And Fabrication Of Optical Filters, John-Michael Juneau

Graduate Theses - Physics and Optical Engineering

The purpose of this thesis is to create a model for designing optical filters and a method for fabricating the designed filters onto a multitude of substrates, as well as to find ways to optimize this process. The substrates that were tested were quartz, glass slides, polycarbonate, and polyethylene terephthalate (PET). This work will account for variations in the deposition process and substrate cleaning method, in order to optimize the performance of the final optical filter. Several different filters were simulated and then fabricated. These filters included 3, 5, and 7-layer Bragg reflectors, 11-layer narrowband filters, and some variations of …


Identifying Sources Of Low-Spatial Frequency Figure Errors In Full-Shell X-Ray Optics, Samantha Johnson, Wayne Baumgartner Oct 2017

Identifying Sources Of Low-Spatial Frequency Figure Errors In Full-Shell X-Ray Optics, Samantha Johnson, Wayne Baumgartner

Von Braun Symposium Student Posters

No abstract provided.


Fabrication And Characterization Of Thermo-Optic Mach-Zehnder Silicon Modulator, Yeongho Park Oct 2017

Fabrication And Characterization Of Thermo-Optic Mach-Zehnder Silicon Modulator, Yeongho Park

Graduate Theses - Physics and Optical Engineering

This thesis focuses on the modeling, design, and fabrication of the Thermo-Optic Mach-Zehnder Modulator, which is one of the simple active devices in silicon photonics. The Mach-Zehnder interferometer (MZI) was formed as an optical path on a silicon on insulator (SOI) wafer of 2040±80 nm thick, and the thermo-optic effect was used to modulate the infrared light of 1553 nm wavelength by controlling the temperature of the one arm of the MZI. To fabricate and understand the Si photonic device, the whole process from theory to the measurement setup is introduced. Additionally, all the fabrication details and some informative experiments …


Confocal Laser Induced Fluorescence With Comparable Spatial Localization To The Conventional Method, Derek S. Thompson, Miguel F. Henriquez, Earl E. Scime, Timothy N. Good Oct 2017

Confocal Laser Induced Fluorescence With Comparable Spatial Localization To The Conventional Method, Derek S. Thompson, Miguel F. Henriquez, Earl E. Scime, Timothy N. Good

Physics and Astronomy Faculty Publications

We present measurements of ion velocity distributions obtained by laser induced fluorescence (LIF) using a single viewport in an argon plasma. A patent pending design, which we refer to as the confocal fluorescence telescope, combines large objective lenses with a large central obscuration and a spatial filter to achieve high spatial localization along the laser injection direction. Models of the injection and collection optics of the two assemblies are used to provide a theoretical estimate of the spatial localization of the confocal arrangement, which is taken to be the full width at half maximum of the spatial optical response. The …


Use Of A Novel Infrared Wavelength-Tunable Laser Mueller-Matrix Polarimetric Scatterometer To Measure Nanostructured Optical Materials, Jason C. Vap, Stephen E. Nauyoks, Michael R. Benson, Michael A. Marciniak Oct 2017

Use Of A Novel Infrared Wavelength-Tunable Laser Mueller-Matrix Polarimetric Scatterometer To Measure Nanostructured Optical Materials, Jason C. Vap, Stephen E. Nauyoks, Michael R. Benson, Michael A. Marciniak

Faculty Publications

Nanostructured optical materials, for example, metamaterials, have unique spectral, directional, and polarimetric properties. Samples designed and fabricated for infrared (IR) wavelengths have been characterized using broadband instruments to measure specular polarimetric transmittance or reflectance as in ellipsometry or integrated hemisphere transmittance or reflectance. We have developed a wavelength-tunable IR Mueller-matrix (Mm) polarimetric scatterometer which uses tunable external-cavity quantum-cascade lasers (EC-QCLs) to tune onto and off of the narrowband spectral resonances of nanostructured optical materials and performed full polarimeteric and directional evaluation to more fully characterize their behavior. Using a series of EC-QCLs, the instrument is tunable over 4.37-6.54 μm wavelengths …


Laser Heating Of Graphite And Pulsed Laser Ablation Of Titanium And Aluminum, William A. Bauer Sep 2017

Laser Heating Of Graphite And Pulsed Laser Ablation Of Titanium And Aluminum, William A. Bauer

Theses and Dissertations

Tactical missions for laser weapons include a wide variety of targets, increasing the demands on the laser lethality community. New approaches to reducing the dimensionality of laser and materials interactions are necessary to increase predictive capability. Self-contained systematic experimental study was conducted on continuous wave and pulsed laser interaction with graphite, Al, and Ti. The spectroscopy and plume dynamics from the heating and ablation of these materials was examined to characterize laser weapons effects, develop graphite response for thermal protection systems, and provide optical diagnostics for materials processing. Furthermore, analysis of ablated plume velocity distributions shows application of conventional Maxwell-Boltzmann …


Robustness And Mode Selectivity In Parity-Time (Pt) Symmetric Lasers, M. H. Teimourpour, M. Khajavikhan, Demetrios N. Christodoulides, Ramy El-Ganainy Sep 2017

Robustness And Mode Selectivity In Parity-Time (Pt) Symmetric Lasers, M. H. Teimourpour, M. Khajavikhan, Demetrios N. Christodoulides, Ramy El-Ganainy

Department of Physics Publications

We investigate two important aspects of PT symmetric photonic molecule lasers, namely the robustness of their single longitudinal mode operation against instabilities triggered by spectral hole burning effects, and the possibility of more versatile mode selectivity. Our results, supported by numerically integrating the nonlinear rate equations and performing linear stability analysis, reveals the following: (1) In principle a second threshold exists after which single mode operation becomes unstable, signaling multimode oscillatory dynamics, (2) For a wide range of design parameters, single mode operation of PT lasers having relatively large free spectral range (FSR) can be robust even at higher gain …


Synthesis Of Non-Uniformly Correlated Partially Coherent Sources Using A Deformable Mirror, Milo W. Hyde Iv, Santasri Bose-Pillai, Ryan A. Wood Sep 2017

Synthesis Of Non-Uniformly Correlated Partially Coherent Sources Using A Deformable Mirror, Milo W. Hyde Iv, Santasri Bose-Pillai, Ryan A. Wood

Faculty Publications

The near real-time synthesis of a non-uniformly correlated partially coherent source using a low-actuator-count deformable mirror is demonstrated. The statistical optics theory underpinning the synthesis method is reviewed. The experimental results of a non-uniformly correlated source are presented and compared to theoretical predictions. A discussion on how deformable mirror characteristics such as actuator count and pitch affect source generation is also included.


Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo Sep 2017

Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo

Dissertations, Theses, and Capstone Projects

In order to improve future generations of dielectric capacitors a deeper understanding of voltage-induced dielectric breakdown and electrical energy storage limitations is required. This dissertation presents the use of far-field optical second harmonic generation (SHG) polarimetry for probing structural defects and polar domains in linear and nonlinear perovskite dielectric ceramics. We investigated the formation of electric field-induced structural distortions at pristine Fe-doped SrTiO3 (Fe:STO) electrode interfaces, structural defect and strain formation due to oxygen vacancy migration in electrodegraded Fe:STO single crystals, and mixed tetragonal and rhombohedral phase domains in ferroelectric Zr-doped BaTiO3 (BZT) films exhibiting excellent …


Control Of Light-Matter Interaction In 2d Semiconductors, Zheng Sun Sep 2017

Control Of Light-Matter Interaction In 2d Semiconductors, Zheng Sun

Dissertations, Theses, and Capstone Projects

In this thesis we discuss the control of light matter interaction in low dimensional nanostructure cavity light confining structures. These structures have controllable dispersion properties through design which can be exploited to modify the interaction of light and matter. We will discuss two different types of light confining microcavities: a dielectric cavity and a metal cavity. The specific design of the cavity gives rise to the confinement of the electric field in the center where the nano-materials are placed. In this work, the main material was on the new class of two- dimensional semiconductors of transition metal dichalcogenides (TMDs). Due …


Eikonal+ Training And Simulation Platform: Enabling A New Generation Of Optical Systems, Daniel K. Nikolov Aug 2017

Eikonal+ Training And Simulation Platform: Enabling A New Generation Of Optical Systems, Daniel K. Nikolov

Link Foundation Modeling, Simulation and Training Fellowship Reports

The year of 2016 was proclaimed by many to be the year of virtual/augmented reality [Forbes]. The public attention was captured by the idea of wearable and immersive devices that can be used for communication, training, simulation and much more. However, the realization of such AR/VR displays has been staggered due to limitation of the optical/light engine of those devices. Furthermore, head-worn displays are only one example of a new generation of optical systems that require non-traditional technologies to achieve high optical performance, in a compact and light form factor. The development of these technologies requires a new set of …


Fresnel Spatial Filtering Of Quasihomogeneous Sources For Wave Optics Simulations, Milo W. Hyde Iv, Santasri Bose-Pillai Aug 2017

Fresnel Spatial Filtering Of Quasihomogeneous Sources For Wave Optics Simulations, Milo W. Hyde Iv, Santasri Bose-Pillai

Faculty Publications

High-spatial-frequency optical fields or sources are often encountered when simulating directed energy, active imaging, or remote sensing systems and scenarios. These spatially broadband fields are a challenge in wave optics simulations because the sampling required to represent and then propagate these fields without aliasing is often impractical. To address this, two spatial filtering techniques are presented. The first, called Fresnel spatial filtering, finds a spatially band-limited source that, after propagation, produces the exact observation plane field as the broadband source over a user-specified region of interest. The second, called statistical or quasihomogeneous spatial filtering, finds a spatially band-limited source that, …


New Flexible Channels For Room Temperature Tunneling Field Effect Transistors, Boyi Hao, Anjana Asthana, Paniz Khanmohammadi, Paul Bergstrom, Douglas R. Banyai, Madhusudan A. Savaikar, John A. Jaszczak, Yoke Khin Yap Aug 2017

New Flexible Channels For Room Temperature Tunneling Field Effect Transistors, Boyi Hao, Anjana Asthana, Paniz Khanmohammadi, Paul Bergstrom, Douglas R. Banyai, Madhusudan A. Savaikar, John A. Jaszczak, Yoke Khin Yap

Paul Bergstrom

Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various …


Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak Aug 2017

Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak

Paul Bergstrom

Although devices have been fabricated displaying interesting single-electron transport characteristics, there has been limited progress in the development of tools that can simulate such devices based on their physical geometry over a range of bias conditions up to a few volts per junction. In this work, we present the development of a multi-island transport simulator, MITS, a simulator of tunneling transport in multi-island devices that takes into account geometrical and material parameters, and can span low and high source-drain biases. First, the capabilities of MITS are demonstrated by modeling experimentaldevices described in the literature, and showing that the simulated device …


Construction And Passive Q-Switching Of A Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes As A Saturable Absorber, Austin Scott Aug 2017

Construction And Passive Q-Switching Of A Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes As A Saturable Absorber, Austin Scott

Graduate Theses - Physics and Optical Engineering

The purpose of this thesis is to design, build, test, and achieve pulsed operation of a ring-cavity erbium-doped fiber laser using carbon nanotubes as a saturable absorber. The erbium-doped fiber is characterized first, cross-sections are calculated, and the gain value is determined. Subsequently, the ring cavity is constructed and the laser is operated in the continuous wave regime. Much time is then spent trying to characterize and utilize the carbon nanotubes successfully. Many dispersions are made using multiple solvents and dispersing media, various images are taken with both scanning electron and Raman microscopy, and attempts at purification are made. Saturable …


Evaluation Of Commercial Nickel–Phosphorus Coating For Ultracold Neutron Guides Using A Pinhole Bottling Method, Robert W. Pattie, Evan R. Adamek, T. Brenner, A. Brandt, Leah J. Broussard, Nathan Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott A. Currie, Peter Geltenbort, Takeyasu M. Ito, T. Lauer, Chenyu Liu, Jaroslaw Majewski, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, John C. Ramsey, Daniel J. Salvat, Alexander Saunders, Juri Schroffenegger, Zebo Tang, Wanchun Wei, Zhehui Wang, Erik B. Watkins, Albert R. Young, B.A. Zeck Aug 2017

Evaluation Of Commercial Nickel–Phosphorus Coating For Ultracold Neutron Guides Using A Pinhole Bottling Method, Robert W. Pattie, Evan R. Adamek, T. Brenner, A. Brandt, Leah J. Broussard, Nathan Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott A. Currie, Peter Geltenbort, Takeyasu M. Ito, T. Lauer, Chenyu Liu, Jaroslaw Majewski, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, John C. Ramsey, Daniel J. Salvat, Alexander Saunders, Juri Schroffenegger, Zebo Tang, Wanchun Wei, Zhehui Wang, Erik B. Watkins, Albert R. Young, B.A. Zeck

Robert W. Pattie Jr.

We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle …


Raman Spectroscopy Of Oxygen Evolution Catalysts And Psii Manganese Model Compounds, Sergei Shmakov, Daniel A. Hartzler, Alireza Karbakhsh Ravari, Yulia Pushkar Aug 2017

Raman Spectroscopy Of Oxygen Evolution Catalysts And Psii Manganese Model Compounds, Sergei Shmakov, Daniel A. Hartzler, Alireza Karbakhsh Ravari, Yulia Pushkar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Photosynthesis is the basis of life on earth, and oxygen evolution catalysts are key components of this complicated, yet not fully understood process. Photosystem II, a large membrane bound pigment-protein complex, is the key system that facilitates oxygenic photosynthesis via the oxygen evolving complex (a natural oxygen evolving catalyst). It is a key component in oxygen producing catalysts, which can be used in fields such as energy production and biomimetic catalysts. The oxygen evolution cycle, or Kok cycle going within it is still not studied completely. In this project, we were studying the vibrational (and structural) state of a Manganese …


Local Moments And Itinerant Electrons: Gaining New Insights Through Investigating Electronic And Dynamical Properties, Nicholas Steven Sirica Aug 2017

Local Moments And Itinerant Electrons: Gaining New Insights Through Investigating Electronic And Dynamical Properties, Nicholas Steven Sirica

Doctoral Dissertations

Magnetic materials are often categorized in terms of either a purely local or a purely itinerant picture despite the fact that the vast majority actually fall within a spectrum that ranges between these two extremes. It is from such a starting point that this thesis aims at developing an understanding of how the complex interplay between local moments and itinerant electrons ultimately affects the electronic and dynamical properties. Such ideas are explored in greater detail using two materials as case studies: the chiral helimagnet Cr1/3NbS2 [Cr intercalated Niobium Disulfide] and YFe2Ge2 [Yttrium Iron Germanide] …