Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

2001

Discipline
Institution
Keyword
Publication
Publication Type

Articles 1 - 20 of 20

Full-Text Articles in Optics

Techniques For The Regeneration Of Wideband Speech From Narrowband Speech, Jason A. Fuemmeler, Russell C. Hardie, William R. Gardner Dec 2001

Techniques For The Regeneration Of Wideband Speech From Narrowband Speech, Jason A. Fuemmeler, Russell C. Hardie, William R. Gardner

Electrical and Computer Engineering Faculty Publications

This paper addresses the problem of reconstructing wideband speech signals from observed narrowband speech signals. The goal of this work is to improve the perceived quality of speech signals which have been transmitted through narrowband channels or degraded during acquisition. We describe a system, based on linear predictive coding, for estimating wideband speech from narrowband. This system employs both previously identified and novel techniques. Experimental results are provided in order to illustrate the system’s ability to improve speech quality. Both objective and subjective criteria are used to evaluate the quality of the processed speech signals.


Modeling Axisymmetric Optical Precision Piezoelectric Membranes, James W. Rogers Jr. Oct 2001

Modeling Axisymmetric Optical Precision Piezoelectric Membranes, James W. Rogers Jr.

Theses and Dissertations

The US Department of Defense (DOD), as well as the National Aeronautics and Astronautics Administration (NASA) and the Jet Propulsion Laboratory (JPL) are interested in developing and deploying precise, compliant, light-weight, space-based structures. More specifically, the Air Force’s core competencies ‘Aerospace Superiority’ and ‘Information Superiority’ demand ever-increasing depth and breadth of capability. Whether used for energy transmission or optical reconnaissance, current launch restraints limit rigid space-based optical reflector size. To support this requirement, the Air Force Research Laboratory (AFRL) is developing a large space-based optical membrane telescope. Inflatable reflectors can conceptually break this barrier, but controlling such a compliant structure …


Distinguishing Surface And Bulk Contributions To Third-Harmonic Generation In Silicon, Peter N. Saeta, Nathan A. Miller '01 Oct 2001

Distinguishing Surface And Bulk Contributions To Third-Harmonic Generation In Silicon, Peter N. Saeta, Nathan A. Miller '01

All HMC Faculty Publications and Research

We report measurements of third-harmonic generation from ultrathin crystalline silicon layers of gradually varying thickness. Both the angular and thickness dependence of the third-harmonic light generated in transmission at normal incidence are consistent with negligible surface contribution to third-harmonic generation in silicon, even under tight focusing. This work illustrates a method for distinguishing surface and bulk contributions to harmonic generation.


Stimulated Emission Of Polarization-Entangled Photons, Antia Lamas-Linares, John C. Howell, Dik Bouwmeester Aug 2001

Stimulated Emission Of Polarization-Entangled Photons, Antia Lamas-Linares, John C. Howell, Dik Bouwmeester

Mathematics, Physics, and Computer Science Faculty Articles and Research

Entangled photon pairs—discrete light quanta that exhibit non-classical correlations—play a crucial role in quantum information science (for example, in demonstrations of quantum non-locality1,2,3,4,5,6,7, quantum teleportation8,9 and quantum cryptography10,11,12,31). At the macroscopic optical-field level non-classical correlations can also be important, as in the case of squeezed light13, entangled light beams14,15 and teleportation of continuous quantum variables16. Here we use stimulated parametric down-conversion to study entangled states of light that bridge the gap between discrete and macroscopic optical quantum correlations. We demonstrate experimentally the onset of laser-like action for entangled photons, through …


Microcavity Surface Emitting Laser, Stewart Feld, John P. Loehr, James A. Lott Jul 2001

Microcavity Surface Emitting Laser, Stewart Feld, John P. Loehr, James A. Lott

AFIT Patents

A three-dimensional waveguiding structure for a microcavity surface-emitting laser is described in which native aluminum oxide layers provide control of intracavity waveguiding and the laser optical mode structure of the emitted beam. Microcavity lasers described herein account for the blueshift of the emission wavelength as the laser lateral dimensions are reduced to or below the emission wavelength.


Feedback Correction Of Angular Error In Grating Readout, Monish Ranjan Chatterjee, Sundaram Ramachandran Jul 2001

Feedback Correction Of Angular Error In Grating Readout, Monish Ranjan Chatterjee, Sundaram Ramachandran

Electrical and Computer Engineering Faculty Publications

Angular and wavelength READ beam errors in holographic interconnection systems are often a recurrent problem. Several strategies have been proposed to minimize or eliminate such READOUT misalignments.

Some years ago, Chatterjee and co-workers proposed a method involving READ beam wavelength tuning to correct output angular errors. In this paper, we investigate the possibility of using an acousto-optic (A-O) Bragg cell with optoelectronic feedback to dynamically correct the scattered beam for deviations in the incidence direction of the READ beam of a hologram. The concept here is based on an acoustic frequency feedback strategy used recently by Balakshy and Kazaryan for …


On The Effect Of Electron Plasma Waves With Relativistic Phase Velocity On Large-Angle Stimulated Raman Scattering Of Modulated Short Laser Pulse In Plasmas, Nikolai E. Andreev, Serguei Y. Kalmykov May 2001

On The Effect Of Electron Plasma Waves With Relativistic Phase Velocity On Large-Angle Stimulated Raman Scattering Of Modulated Short Laser Pulse In Plasmas, Nikolai E. Andreev, Serguei Y. Kalmykov

Serge Youri Kalmykov

Suppression of a large-angle stimulated Raman scattering (LA-SRS) of a short modulated (two-frequency) laser pulse in a transparent plasma in the presence of a linear long-wavelength electron plasma wave (LW EPW) having relativistic phase velocity is considered under the conditions of weak and strong coupling. The laser spectrum includes two components with a frequency shift equal to the frequency of the LW EPW. The mutual influence of different spectral components of a laser on the SRS under a given angle in the presence of the LW EPW is examined.


Overview Of Acousto-Optic Bistability, Chaos, And Logical Applications, Monish Ranjan Chatterjee, Erol Sonmez May 2001

Overview Of Acousto-Optic Bistability, Chaos, And Logical Applications, Monish Ranjan Chatterjee, Erol Sonmez

Electrical and Computer Engineering Faculty Publications

An overview is presented of the key results in the field of acousto-optic bistability in the past two decades. It is shown that the basic acousto-optic bistable device may be described as a nonlinear dynamical system which satisfies a quadratic map. Thereafter, details are presented of several analytical methods, computer modeling approaches, including the SPICE circuit modeling technique, and experiments that have been used to understand the phenomenon.

Extensions to logical and digital applications are also discussed.


Coherent Differential Absorption Lidar For Combined Measurement Of Wind And Trace Atmospheric Gases, Grady James Koch Apr 2001

Coherent Differential Absorption Lidar For Combined Measurement Of Wind And Trace Atmospheric Gases, Grady James Koch

Electrical & Computer Engineering Theses & Dissertations

A lidar system was developed for making combined range-resolved measurements of wind speed and direction, water vapor concentration, and carbon dioxide concentration in the atmosphere. This lidar combines the coherent Doppler technique for wind detection and the differential absorption lidar (DIAL) technique to provide a multifunctional capability. DIAL and coherent lidars have traditionally been thought of and implemented as separate instruments, but the research reported here has shown a demonstration of combining the coherent and DIAL techniques into a single instrument using solid-state lasers. The lasers used are of Ho:Tm:YLF, which operates at a wavelength of 2 μm. This wavelength …


Bistable Operation Of A Two-Section 1.3-Mm Inas Quantum Dot Laser—Absorption Saturation And The Quantum Confined Stark Effect, Xiaodong Huang, A. Stintz, Hua Li, Audra Rice, G. T. Liu, L.F. Lester, Julian Cheng, K.J. Malloy Mar 2001

Bistable Operation Of A Two-Section 1.3-Mm Inas Quantum Dot Laser—Absorption Saturation And The Quantum Confined Stark Effect, Xiaodong Huang, A. Stintz, Hua Li, Audra Rice, G. T. Liu, L.F. Lester, Julian Cheng, K.J. Malloy

Faculty Publications

Room temperature, continuous-wave bistability was observed in oxide-confined, two-section, 1.3- m quantum-dot (QD) lasers with an integrated intracavity quantum-dot saturable absorber. The origin of the hysteresis and bistability were shown to be due to the nonlinear saturation of the QD absorption and the electroabsorption induced by the quantum confined Stark effect.


Photoluminescence Of Single Quantum Well Structures In Gallium Arsenide, Christian A. Bartholomew Mar 2001

Photoluminescence Of Single Quantum Well Structures In Gallium Arsenide, Christian A. Bartholomew

Theses and Dissertations

The continued development of state-of the-art semiconductor technologies and devices by the United States Air Force and the Department of Defense requires accurate and efficient techniques to evaluate and model these new materials. Of particular interest to the Air Force are quantum well structures which can be used for small-scale laser sources in fly-by-light applications, as efficient infrared countermeasures to heat-seeking missiles, or as advanced seekers in optically guided missiles. This thesis provides the initial experimental procedures and data necessary to begin producing accurate yet robust models. Although carrier effective masses could not be evaluated using hot-electron photoluminescence, photoluminescence excitation …


Numerical Study Of Optical Delay In Semiconductor Multilayer Distributed Bragg Reflector And Tunable Microcavity Structures, Michael I. K. Etan Mar 2001

Numerical Study Of Optical Delay In Semiconductor Multilayer Distributed Bragg Reflector And Tunable Microcavity Structures, Michael I. K. Etan

Theses and Dissertations

The Air Force has a growing need for the greater bandwidth, speed, and flexibility offered by optical communication links. Future space systems and airborne platforms will most likely use optical signals for efficient power transmission and to minimize the possibility of spoofing and eavesdropping. Tunable optical delays play an important role in the implementation of free space optical communication links. The primary challenge in implementing these systems is the active maintenance of coherent wave fronts across the system's optical aperture. For space applications, this aperture may he hundreds of meters in diameter. Spatial segmentation of a large aperture into smaller …


Control And Characterization Of Line-Addressable Micromirror Arrays, Harris J. Hall Mar 2001

Control And Characterization Of Line-Addressable Micromirror Arrays, Harris J. Hall

Theses and Dissertations

This research involved the design and implementation of a complete line-addressable control system for a 32x32 electrostatic piston-actuated micromirror array device. Line addressing reduces the number of control lines from N2 to 2N making it possible to design larger arrays and arrays with smaller element sizes. The system utilizes the electromechanical bi-stability of individual elements to bold arbitrary bi-stable phase patterns. The control system applies pulse width modulated (PWM) signals to the rows and columns of the micromirror array. Three modes of operation were conceived and built into the system. The first was the traditional signal scheme which requires …


Incoherent Beam Combining Using Stimulated Brillouin Scattering In Multimode Fibers, Timothy H. Russell, Won B. Roh, John R. Marciante Feb 2001

Incoherent Beam Combining Using Stimulated Brillouin Scattering In Multimode Fibers, Timothy H. Russell, Won B. Roh, John R. Marciante

Faculty Publications

A beam combining technique for producing a single, spatially coherent beam from two mutually incoherent (temporally and spatially) lasers is demonstrated and the spatial coherence properties of the resulting beam are characterized. The technique is based on simultaneous excitation of stimulated Brillouin scattering by two independent lasers operating at two different wavelengths in a long multimode optical fiber. Though spectrally independent, the resulting Stokes beams produce essentially identical intensity distributions corresponding to the fundamental fiber mode. Abstract © 2001 Optical Society of America.


Tilted Bilayer Membranes As Simple Transmission Quarter-Wave Retardation Plates, R. M.A. Azzam, Fadi A. Mahmoud Feb 2001

Tilted Bilayer Membranes As Simple Transmission Quarter-Wave Retardation Plates, R. M.A. Azzam, Fadi A. Mahmoud

Electrical Engineering Faculty Publications

A tilted bilayer membrane, which consists of two thin films of transparent optically isotropic materials of different refractive indices, can function as a transmission quarter-wave retarder (QWR) at a high angle of incidence. A specific design using a cryolite-Si membrane in the infrared is presented, and its tolerances to small shifts of wavelength, incidence angle, and film thickness errors are discussed. Some designs provide a dual QWR in transmission and reflection. Such devices provide simple linear-to-circular (and circular-to-linear) polarization transformers. Bilayer eighth-wave retarders without diattenuation are also introduced.


The Age Of Entanglement Jan 2001

The Age Of Entanglement

David D Nolte

Quantum mechanics is a venerable field of study. The year 2000 marked the 100th anniversary of theoriginal quantum hypothesis proposed by Max Planck in November of 1900. Few current fields in physicsor engineering are as old as quantum mechanics. It predates relativity, both special and general. It predatesnuclear and particle physics. Quantum mechanics even predates universal acceptance of the molecularhypothesis, that is, that all matter is made up of individual molecules in thermal motion. It may be hard tobelieve, but this happened only after Einstein's paper on Brownian motion was published in his miracleyear 1905.


Comparing Classical And Quantum Dynamics Of Strong-Field Double Ionization, R. Panfili, J. H. Eberly, Stanley L. Haan Jan 2001

Comparing Classical And Quantum Dynamics Of Strong-Field Double Ionization, R. Panfili, J. H. Eberly, Stanley L. Haan

University Faculty Publications and Creative Works

We compare quantum mechanical and fully classical treatments of electron dynamics accompanying strong field double ionization. The major features seen in quantum mechanical simulations, including the double-ionization jets, are reproduced when using a classical ensemble of two-particle trajectories.


Optical Studies Of Layered Inorganic Solids: A Novel Phase Transition And Energy Transfer Studies., Christie L. Larochelle Jan 2001

Optical Studies Of Layered Inorganic Solids: A Novel Phase Transition And Energy Transfer Studies., Christie L. Larochelle

Electronic Theses and Dissertations

The optical properties of a group of dicyanoargentates(1) and dicyanoaurates( 1) have been studied. The samples include K2Na[Ag(CN)2I3, Tb[Ag(CN)2]3, Tb[Au(CN)2I3 and a series of compounds of the form Tb,Lal-,[Ag(CN)2]3 with x=0.001, 0.01 and 0.1. Additionally, a novel type of silver-gold mixed- metal sample (L~[A~,Au~-,(CN)~]~ with x=0.9 and 0.5) was synthesized and characterized. The compound K2Na[Ag(CN)2I3 has earlier been shown to exhibit a phenomenon known as luminescence thermochromism, whereby only one emission band is present at very low temperatures and very high temperatures, but a second, lower energy band is also present at intermediate temperatures. This prompted further investigation to explain …


Scintillation Behind The Collecting Lens Of A Receiver, Clarissa A. Fleming Russell Jan 2001

Scintillation Behind The Collecting Lens Of A Receiver, Clarissa A. Fleming Russell

Retrospective Theses and Dissertations

One of the negative effects that a laser beam experiences as it propagates through the atmosphere is intensity fluctuations or scintillation. Because scintillation-- as it pertains to laser radar and laser satellite communication systems-- is the main subject of this research, the assumption of an optical element ( such as a Gaussian lens) along the propagation path in front of the detector is valid. The mathematical addition of optical elements to the propagation path is treated using the ABCD ray matrix method. The expression for scintillation is derived, analyzed, and numerically calculated for positions to the left and right of …


Study Of Dynamics And Mechanism Of Metal-Induced Silicon Growth, Elena A. Guliants, Wayne A. Anderson Jan 2001

Study Of Dynamics And Mechanism Of Metal-Induced Silicon Growth, Elena A. Guliants, Wayne A. Anderson

Electrical and Computer Engineering Faculty Publications

The present study addresses the mechanism of metal-induced growth of device-quality silicon thin films. Si deposition was performed by magnetron sputtering on a 25-nm-thick Ni prelayer at 525–625 °C and yielded a continuous, highly crystalline film with a columnar structure. A Ni disilicide intermediate layer formed as a result of the Ni reaction with Si deposit provides a sufficient site for the Si epitaxial growth because lattice mismatch is small between the two materials. The reaction between Ni and Si was observed to progress in several stages. The NixSiy phase evolution in a Ni:Si layer was studied by x-ray photoelectron …