Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Optics

Structured Illumination Diffuse Optical Tomography For Mouse Brain Imaging, Matthew Reisman Dec 2017

Structured Illumination Diffuse Optical Tomography For Mouse Brain Imaging, Matthew Reisman

Arts & Sciences Electronic Theses and Dissertations

As advances in functional magnetic resonance imaging (fMRI) have transformed the study of human brain function, they have also widened the divide between standard research techniques used in humans and those used in mice, where high quality images are difficult to obtain using fMRI given the small volume of the mouse brain. Optical imaging techniques have been developed to study mouse brain networks, which are highly valuable given the ability to study brain disease treatments or development in a controlled environment. A planar imaging technique known as optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional …


Multiscale Imaging Of The Mouse Cortex Using Two-Photon Microscopy And Wide-Field Illumination, Jonathan Richard Bumstead Dec 2017

Multiscale Imaging Of The Mouse Cortex Using Two-Photon Microscopy And Wide-Field Illumination, Jonathan Richard Bumstead

McKelvey School of Engineering Theses & Dissertations

The mouse brain can be studied over vast spatial scales ranging from microscopic imaging of single neurons to macroscopic measurements of hemodynamics acquired over the majority of the mouse cortex. However, most neuroimaging modalities are limited by a fundamental trade-off between the spatial resolution and the field-of-view (FOV) over which the brain can be imaged, making it difficult to fully understand the functional and structural architecture of the healthy mouse brain and its disruption in disease. My dissertation has focused on developing multiscale optical systems capable of imaging the mouse brain at both microscopic and mesoscopic spatial scales, specifically addressing …


Nuclear Spin Alignment In Optically Pumped Semiconductors, Matthew M. Willmering May 2017

Nuclear Spin Alignment In Optically Pumped Semiconductors, Matthew M. Willmering

Arts & Sciences Electronic Theses and Dissertations

Nuclear magnetic resonance (NMR) has shown its ability to be a very informative analytical technique due to the ability to measure very small changes in the energy splittings due to the nuclei’s local environment. However, this ability is hindered by the low sensitivity of the experiment. Many methods have been postulated and implemented to enhance the sensitivity of NMR experiments; one of which is optically pumped NMR (OPNMR). In this dissertation, the usefulness and potential applications of OPNMR are presented. First, a doubly resonant OPNMR probe was fabricated in order to complete more advanced NMR techniques while optically pumping the …


Measuring Molecular Orientation And Rotational Mobility Using A Tri-Spot Point Spread Function, Oumeng Zhang May 2017

Measuring Molecular Orientation And Rotational Mobility Using A Tri-Spot Point Spread Function, Oumeng Zhang

McKelvey School of Engineering Theses & Dissertations

Single molecules have become a powerful tool for biophysicists since they were first optically detected 28 years ago. Understanding molecular orientation can not only improve the accuracy of single-molecule localization, but it can also provide insight into biochemical behaviors at the nanoscale. In this thesis, I present a method to measure the molecular orientation and rotational mobility of single-molecule emitters by designing and implementing a tri-spot point spread function. The point spread function is designed so that it is capable of measuring all degrees of freedom related to molecular orientation and rotational mobility. Its design is optimized by maximizing the …