Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 270

Full-Text Articles in Optics

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle Apr 2024

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle

Faculty Publications

Zinc germanium diphosphide (ZnGeP2) is a ternary semiconductor best known for its nonlinear optical properties. A primary application is optical parametric oscillators operating in the mid-infrared region. Controlled donor doping provides a method to minimize the acceptor-related absorption bands that limit the output power of these devices. In the present study, a ZnGeP2 crystal is doped with selenium during growth. Selenium substitutes for phosphorus and serves as a deep donor. Significant concentrations of native defects (zinc vacancies, germanium-on-zinc antisites, and phosphorous vacancies) are also present in the crystal. Electron paramagnetic resonance (EPR) is used to establish the …


Residual Optical Absorption From Native Defects In Cdsip2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Elizabeth M. Scherrer, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton Feb 2024

Residual Optical Absorption From Native Defects In Cdsip2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Elizabeth M. Scherrer, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

CdSiP2 crystals are used in optical parametric oscillators to produce tunable output in the mid-infrared. As expected, the performance of the OPOs is adversely affected by residual optical absorption from native defects that are unintentionally present in the crystals. Electron paramagnetic resonance (EPR) identifies these native defects. Singly ionized silicon vacancies (V-Si) are responsible for broad optical absorption bands peaking near 800, 1033, and 1907 nm. A fourth absorption band, peaking near 630 nm, does not involve silicon vacancies. Exposure to 1064 nm light when the temperature of the CdSiP2 crystal is near 80K converts …


System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers Nov 2023

System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers

Faculty Publications

We provide an in-depth analysis of noise considerations in coherent imaging, accounting for speckle and scintillation in addition to “conventional” image noise. Specifically, we formulate closed-form expressions for total effective noise in the presence of speckle only, scintillation only, and speckle combined with scintillation. We find analytically that photon shot noise is uncorrelated with both speckle and weak-to-moderate scintillation, despite their shared dependence on the mean signal. Furthermore, unmitigated speckle and scintillation noise tends to dominate coherent-imaging performance due to a squared mean-signal dependence. Strong coupling occurs between speckle and scintillation when both are present, and we characterize this behavior …


Active-Illumination Extension To The Priest And Meier Pbrdf, Mark F. Spencer, Milo W. Hyde Iv, Santasri R. Bose-Pillai, Michael A. Marciniak Oct 2023

Active-Illumination Extension To The Priest And Meier Pbrdf, Mark F. Spencer, Milo W. Hyde Iv, Santasri R. Bose-Pillai, Michael A. Marciniak

Faculty Publications

This paper develops a 3D vector solution for the scattering of partially coherent laser-beam illumination from statistically rough surfaces. Such a solution enables a rigorous comparison to the well-known Priest and Meier polarimetric bidirectional reflectance distribution function (pBRDF) [Opt Eng 41(5),988 (2002).]. Overall, the comparison shows excellent agreement for the normalized spectral density and the degree of polarization. Based on this agreement, the 3D vector solution also enables an extension to the Priest and Meier pBRDF that accounts for the effects of active illumination. In particular, the 3D vector solution enables the development of a closed-form expression for the spectral …


Propagation Of Spatiotemporal Optical Vortex Beams In Linear, Second-Order Dispersive Media, Milo W. Hyde Iv, Miguel A. Porras Jul 2023

Propagation Of Spatiotemporal Optical Vortex Beams In Linear, Second-Order Dispersive Media, Milo W. Hyde Iv, Miguel A. Porras

Faculty Publications

In this paper, we study the behaviors of spatiotemporal optical vortex (STOV) beams propagating in linear dispersive media. Starting with the Fresnel diffraction integral, we derive a closed-form expression for the STOV field at any propagation distance z in a general second-order dispersive medium. We compare our general result to special cases published in the literature and examine the characteristics of higher-order STOV beams propagating in dispersive materials by varying parameters of the medium and source-plane STOV field. We validate our analysis by comparing theoretical predictions to numerical computations of a higher-order STOV beam propagating through fused silica, where we …


Wave Optics Approach To Solar Cell Brdf Modeling With Experimental Results, Madilynn Compean, Todd V. Small, Milo W. Hyde Iv, Michael Marciniak Jul 2023

Wave Optics Approach To Solar Cell Brdf Modeling With Experimental Results, Madilynn Compean, Todd V. Small, Milo W. Hyde Iv, Michael Marciniak

Faculty Publications

Light curve analysis is often used to discern information about satellites in geosynchronous orbits. Solar panels, comprising a large part of the satellite’s body, contribute significantly to these light curves. Historically, theoretical bidirectional reflectance distribution functions (BRDFs) have failed to capture key features in the scattered light from solar panels. In recently published work, a new solar cell BRDF was developed by combining specular microfacet and “two-slit” diffraction terms to capture specular and periodic/array scattering, respectively. This BRDF was experimentally motivated and predicted many features of the solar cell scattered irradiance. However, the experiments that informed the BRDF were limited …


Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily May 2023

Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily

AFIT Patents

The present invention relates to evanescently coupling whispering gallery mode optical resonators having a liquid coupling as well as methods of making and using same. The aforementioned evanescently coupling whispering gallery mode optical resonators having a liquid couplings provide increased tunability and sensing selectivity over current same. The aforementioned. Applicants’ method of making evanescent-wave coupled optical resonators can be achieved while having coupling gap dimensions that can be fabricated using standard photolithography. Thus economic, rapid, and mass production of coupled WGM resonators-based lasers, sensors, and signal processors for a broad range of applications can be realized.


Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim Apr 2023

Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …


Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers Mar 2023

Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers

Faculty Publications

This work investigates steady-state thermal blooming of a high-energy laser in the presence of laser-driven convection. While thermal blooming has historically been simulated with prescribed fluid velocities, the model introduced here solves for the fluid dynamics along the propagation path using a Boussinesq approximation to the incompressible Navier–Stokes equations. The resultant temperature fluctuations were coupled to refractive index fluctuations, and the beam propagation was modeled using the paraxial wave equation. Fixed-point methods were used to solve the fluid equations as well as to couple the beam propagation to the steady-state flow. The simulated results are discussed relative to recent experimental …


The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv Jan 2023

The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv

Faculty Publications

We study how atmospheric turbulence affects twisted space-time beams, which are non-stationary random optical fields whose space and time dimensions are coupled with a stochastic twist. Applying the extended Huygens–Fresnel principle, we derive the mutual coherence function of a twisted space-time beam after propagating a distance z through atmospheric turbulence of arbitrary strength. We specialize the result to derive the ensemble-averaged irradiance and discuss how turbulence affects the beam’s spatial size, pulse width, and space-time twist. Lastly, we generate, in simulation, twisted space-time beam field realizations and propagate them through atmospheric phase screens to validate our analysis.


Optimizing Switching Of Non-Linear Properties With Hyperbolic Metamaterials, James A. Ethridge, John G. Jones, Manuel R. Ferdinandus, Michael J. Havrilla, Michael A. Marciniak Nov 2022

Optimizing Switching Of Non-Linear Properties With Hyperbolic Metamaterials, James A. Ethridge, John G. Jones, Manuel R. Ferdinandus, Michael J. Havrilla, Michael A. Marciniak

Faculty Publications

Hyperbolic metamaterials have been demonstrated to have special potential in their linear response, but the extent of their non-linear response has not been extensively modeled or measured. In this work, novel non-linear behavior of an ITO/SiO2 layered hyperbolic metamaterial is modeled and experimentally confirmed, specifically a change in the sign of the non-linear absorption with intensity. This behavior is tunable and can be achieved with a simple one-dimensional layered design. Fabrication was performed with physical vapor deposition, and measurements were conducted using the Z-scan technique. Potential applications include tunable optical switches, optical limiters, and tunable components of laser sources.


Oxygen Vacancies In Lib3O5 Crystals And Their Role In Nonlinear Absorption, Brian C. Holloway, Christopher A. Lenyk, Timothy D. Gustafson, Nancy C. Giles Oct 2022

Oxygen Vacancies In Lib3O5 Crystals And Their Role In Nonlinear Absorption, Brian C. Holloway, Christopher A. Lenyk, Timothy D. Gustafson, Nancy C. Giles

Faculty Publications

LiB3O5 (LBO) crystals are used to generate the second, third, and fourth harmonics of near-infrared solid-state lasers. At high power levels, the material’s performance is adversely affected by nonlinear absorption. We show that as-grown crystals contain oxygen and lithium vacancies. Transient absorption bands are formed when these intrinsic defects serve as traps for “free” electrons and holes created by x rays or by three- and four-photon absorption processes. Trapped electrons introduce a band near 300 nm and trapped holes produce bands in the 500-600 nm region. Electron paramagnetic resonance (EPR) is used to identify and characterize the …


Deep-Turbulence Phase Compensation Using Tiled Arrays, Mark F. Spencer, Terry J. Brennan Sep 2022

Deep-Turbulence Phase Compensation Using Tiled Arrays, Mark F. Spencer, Terry J. Brennan

Faculty Publications

Tiled arrays use modulo-2π phase compensation and coherent beam combination to correct for the effects of deep turbulence. As such, this paper uses wave-optics simulations to compare the closed-loop performance of tiled arrays to a branch-point-tolerant phase reconstructor known as LSPV+7 [Appl. Opt. 53, 3821 (2014) [CrossRef] ]. The wave-optics simulations make use of a point-source beacon and are setup with weak-to-strong scintillation conditions. This setup enables a trade-space exploration in support of a power-in-the-bucket comparison with LSPV+7. In turn, the results show that tiled arrays outperform LSPV+7 when transitioning from weak-to-strong scintillation conditions. These results are both …


Optimizing Optical Switching Of Non-Linear Optimizing Optical Switching Of Non-Linear Hyperbolic Metamaterials, James A. Ethridge Sep 2022

Optimizing Optical Switching Of Non-Linear Optimizing Optical Switching Of Non-Linear Hyperbolic Metamaterials, James A. Ethridge

Theses and Dissertations

Modern optical materials are engineered to be used as optical devices in specific applications, such as optical computing. For optical computing, efficient forms of a particular device, the optical switch, still have not been successfully demonstrated. This problem is addressed in this research through the use of designed optical metamaterials, specifically, hyperbolic metamaterials, which offer the possibility of large non-linear properties with a low switching intensity. One-dimensional layered hyperbolic metamaterials composed of alternating layers of metal and dielectric were used here, with ITO as the metal and SiO2 as the dielectric. The non-linear behavior of the ITO/SiO2 layered …


Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz Jun 2022

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz

AFIT Patents

An optoacoustic sensor includes a liquid crystal (LC) cell formed between top and bottom plates of transparent material. A transverse grating formed across the LC cell that forms an optical transmission bandgap. A CL is aligned to form a spring-like, tunable Bragg grating that is naturally responsive to external agitations providing a spectral transition regime, or edge, in the optical transmission bandgap of the transverse grating that respond to broadband acoustic waves. The optoacoustic sensor includes a narrowband light source that is oriented to transmit light through the top plate, the LC cell, and the bottom plate. The optoacoustic sensor …


Improving On Atmospheric Turbulence Profiles Derived From Dual Beacon Hartmann Turbulence Sensor Measurements, Alexander S. Boeckenstedt, Jack E. Mccrae, Santasri Bose-Pillai, Benjamin Wilson Jun 2022

Improving On Atmospheric Turbulence Profiles Derived From Dual Beacon Hartmann Turbulence Sensor Measurements, Alexander S. Boeckenstedt, Jack E. Mccrae, Santasri Bose-Pillai, Benjamin Wilson

Faculty Publications

Atmospheric turbulence is an inevitable source of wavefront distortion in all fields of long range laser propagation and sensing. However, the distorting effects of turbulence can be corrected using wavefront sensors contained in adaptive optics systems. Such systems also provide deeper insight into surface layer turbulence, which is not well understood. A unique method of profile generation by a dual source Hartmann Turbulence Sensor (HTS) technique is introduced here. Measurements of optical turbulence along a horizontal path were taken to create C2n profiles. Two helium-neon laser beams were directed over an inhomogeneous horizontal path and captured by the HTS. The …


Methods For Focal Plane Array Resolution Estimation Using Random Laser Speckle In Non-Paraxial Geometries, Phillip J. Plummer Jun 2022

Methods For Focal Plane Array Resolution Estimation Using Random Laser Speckle In Non-Paraxial Geometries, Phillip J. Plummer

Theses and Dissertations

The infrared (IR) imaging community has a need for direct IR detector evaluation due to the continued demand for small pixel pitch detectors, the emergence of strained-layer-super-lattice devices, and the associated lateral carrier diffusion issues. Conventional laser speckle-based modulation transfer function (MTF) estimation is dependent on Fresnel propagation and a wide-sense-stationary input random process, limiting the use of this approach for lambda (wavelength)-scale IR devices. This dissertation develops two alternative methodologies for speckle-based resolution evaluation of IR focal plane arrays (FPAs). Both techniques are formulated using Rayleigh-Sommerfield electric field propagation, making them valid in the non-paraxial geometries dictated for resolution …


Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip, Jeremiah C. Williams, Hengky Chandrahalim May 2022

Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) pressure sensor includes an optical fiber and a three-dimensional microscopic optical enclosure. The three-dimensional microscopic optical enclosure includes tubular side walls having lateral pleated corrugations and attached to a cleaved tip of the optical fiber to receive a light signal. An optically reflecting end wall is distally engaged to the tubular side walls to enclose a trapped quantity of gas that longitudinally positions the optically reflecting end wall in relation to ambient air pressure, changing a distance traveled by a light signal reflected back through the optical fiber.


Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim May 2022

Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of the optical fighter using a two-photon polymerization process on a photosensitive polymer by a three-dimensional micromachining device. The three-dimensional microscopic optical structure having a hinged optical layer pivotally connected to a distal portion of a suspended structure. A reflective layer is deposited on a mirror surface of the hinged optical layer while in an open position. The hinged optical layer is subsequently positioned in the closed position to align the mirror surface to at least partially reflect a light signal back …


Method Of Making Hinged Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim Mar 2022

Method Of Making Hinged Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A method is provided for fabricating a passive optical sensor on a tip of an optical fiber. The method includes perpendicularly cleaving a tip of an optical fiber and mounting the tip of the optical fiber in a specimen holder of a photosensitive polymer three-dimensional micromachining machine. The method includes forming a three-dimensional microscopic optical structure within the photosensitive polymer that comprises a two cavity Fabry-Perot Interferometer (FPI) having a hinged optical layer that is pivotally coupled to a suspended structure. The method includes removing an uncured portion of the photosensitive polymer using a solvent. The method includes depositing a …


Formulation And Characterization Of Fast-Curing Plastic Scintillators With High-Z Loading, Theodore W. Stephens Mar 2022

Formulation And Characterization Of Fast-Curing Plastic Scintillators With High-Z Loading, Theodore W. Stephens

Theses and Dissertations

Development of novel fast-curing plastic scintillators is highly advantageous due to their potential to be manufactured via 3D printing. Several formulations were developed that exhibit enhanced photon sensitivity, producing modest but discernible photopeaks at an incident gamma energy of 122 keV. The photon sensitivity is achieved via bismuth high-Z loading; however, this practice typically results in diminished light yields. Subsequent formulations, which varied the photoinitiator concentration and curing time, demonstrated successful curing with sufficient plastic hardness, reduced purple discoloration, reduced heat buildup during curing, and resulted in less cracking during the curing process, all of which were correlated with lower …


Directionally Sensitive Gamma Imaging Using Rotating Scatter Masks And Inexpensive, Scintillation Detectors, Christopher S. Charles Mar 2022

Directionally Sensitive Gamma Imaging Using Rotating Scatter Masks And Inexpensive, Scintillation Detectors, Christopher S. Charles

Theses and Dissertations

This work demonstrates the first instantiation of the FitzGerald Rotating Scatter Mask (RSM) as a proof-of-concept for two-dimensional source direction determination using a single, inexpensive, non-cooled scintillator, as well as an alternate mask design for comparison. A large RSM was additively manufactured from low-Z, acrylic like material, and rotated around the ubiquitous standard 3" x 3" NaI(Tl) or NaI(Tl)/CsI(Tl) phoswich detector, set internally to the mask. Smaller versions of the FitzGerald and alternate RSM designs were 3D printed for testing and used in conjunction with a LaBr detector to characterize the RSM system with a size and weight reduction applied. …


Utilization And Efficient Computation Of Polarization Factor Q For Fast, Accurate Brdf Modeling, Samuel D. Butler, Michael A. Marciniak Feb 2022

Utilization And Efficient Computation Of Polarization Factor Q For Fast, Accurate Brdf Modeling, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

The Bidirectional Reflectance Distribution Function (BRDF) is of substantial use in remote sensing, scene generation, and computer graphics, to describe optical scatter off realistic surfaces. This paper begins by summarizing our prior work in relating wave optics and geometric optics models, culminating with the Modified Cook-Torrance (MCT) model. The MCT model is evaluated here against aluminum, Infragold, and silver paint at various wavelengths in the IR. In each case, the MCT model is shown to outperform a standard microfacet model. Then, this paper shows a non-trivial method of computing the primary new term, the polarization factor Q. This optimization …


Electromagnetic Multi–Gaussian Speckle, Milo W. Hyde Iv, Olga Korotkova Jan 2022

Electromagnetic Multi–Gaussian Speckle, Milo W. Hyde Iv, Olga Korotkova

Faculty Publications

Generalizing our prior work on scalar multi-Gaussian (MG) distributed optical fields, we introduce the two-dimensional instantaneous electric-field vector whose components are jointly MG distributed. We then derive the single-point Stokes parameter probability density functions (PDFs) of MG-distributed light having an arbitrary degree and state of polarization. We show, in particular, that the intensity contrast of such a field can be tuned to values smaller or larger than unity. We validate our analysis by generating an example partially polarized MG field with a specified single-point polarization matrix using two different Monte Carlo simulation methods. We then compute the joint PDFs of …


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Characterization Of Infrared Metasurface Optics With An Optical Scatterometer, Matthew R. Miller Dec 2021

Characterization Of Infrared Metasurface Optics With An Optical Scatterometer, Matthew R. Miller

Theses and Dissertations

An optical scatterometer is used to characterize the infrared scatter of a dielectric metasurface cylindrical lens and two variants of that design. The design uses dielectric nanopillars to create the parabolic phase delay required for lensing; the variants change the length of the nanopillars from the design length of 4 microns to 0.9 and 5.2 microns. Scatter measurements were made at the design wavelength of 4 microns, and at 3.39 and 5 microns. These measurements showed wide-angle scatter greater than that measured for a conventional refractive optic, and that these metasurfaces perform their optical function best at the design wavelength …


Uncertainty Analysis For Ccd-Augmented Casi® Brdf Measurement System, Todd V. Small, Samuel D. Butler, Michael A. Marciniak Nov 2021

Uncertainty Analysis For Ccd-Augmented Casi® Brdf Measurement System, Todd V. Small, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

This work presents a measurement uncertainty analysis for a system designed to simultaneously capture specular in-plane and out-of-plane bidirectional reflectance distribution function (BRDF) data with high spatial resolution by augmenting the Complete Angle Scatter Instrument (CASI®) with a charge-coupled device (CCD) camera. Various scatter flux, incident flux, scatter angle, and detector solid angle uncertainty contributions are considered and evaluated based on imperfectly known system parameters. In particular, incident flux temporal fluctuation, detector noise and non-linearity, and out-of-plane aperture misalignment considerations each require significant adjustment from original CASI® uncertainty analysis, and expressions for neutral density (ND) filter, scatter angle, and solid …


Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv Nov 2021

Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv

Faculty Publications

We present a new partially coherent source with spatiotemporal coupling. The stochastic light, which we call a spatiotemporal (ST) non-uniformly correlated (NUC) beam, combines space and time in an inhomogeneous (shift- or space-variant) correlation function. This results in a source that self-focuses at a controllable location in space-time, making these beams potentially useful in applications such as optical trapping, optical tweezing, and particle manipulation. We begin by developing the mutual coherence function for an ST NUC beam. We then examine its free-space propagation characteristics by deriving an expression for the mean intensity at any plane z ≥ 0. To validate …


Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Oct 2021

Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A method of making passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes forming a three-dimensional microscopic optical structure on a cleaved tip of an optical fiber that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Solar Cell Brdf Measurement And Modeling With Out-Of-Plane Data, Todd V. Small, Samuel D. Butler, Michael A. Marciniak Oct 2021

Solar Cell Brdf Measurement And Modeling With Out-Of-Plane Data, Todd V. Small, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

In this work, a CCD-augmented complete angle scatter instrument (CASI) with a visible red laser source was used to measure the BRDF of a commercially available solar cell designed for small satellites, simultaneously capturing both in-plane and out-of-plane data with high angular resolution surrounding the specular direction. The measurements exhibited three distinct scatter features: a central specular peak, an offset specular peak, and a diffraction pattern. The two peaks were caused by different material surfaces with slightly different normal directions, and the diffraction pattern arose from periodically-spaced metal conducting bars running in one direction across the solar cell surface. The …