Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Optics

Thermal Blooming With Laser-Induced Convection: Radial Basis Function Simulation, Benjamin F. Akers, Steven T. Fiorino, Jonah A. Reeger Aug 2023

Thermal Blooming With Laser-Induced Convection: Radial Basis Function Simulation, Benjamin F. Akers, Steven T. Fiorino, Jonah A. Reeger

Faculty Publications

The propagation of a high energy laser through a nearly stagnant absorbing medium is studied. The absorption values and time scale of the problem are such that the laser induces convective heat currents transverse to the beam. These currents couple to the laser via the refractive index, causing time dependent thermal blooming. A numerical method is developed and applied to the model in [ J. Electromagn. Waves Appl. 33, 96 (2019) ], using radial basis functions for spatial differencing, which allows for irregular point spacings and a wide class of geometries. Both the beam and laser-induced fluid dynamics are …


Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers Mar 2023

Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers

Faculty Publications

This work investigates steady-state thermal blooming of a high-energy laser in the presence of laser-driven convection. While thermal blooming has historically been simulated with prescribed fluid velocities, the model introduced here solves for the fluid dynamics along the propagation path using a Boussinesq approximation to the incompressible Navier–Stokes equations. The resultant temperature fluctuations were coupled to refractive index fluctuations, and the beam propagation was modeled using the paraxial wave equation. Fixed-point methods were used to solve the fluid equations as well as to couple the beam propagation to the steady-state flow. The simulated results are discussed relative to recent experimental …


The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv Jan 2023

The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv

Faculty Publications

We study how atmospheric turbulence affects twisted space-time beams, which are non-stationary random optical fields whose space and time dimensions are coupled with a stochastic twist. Applying the extended Huygens–Fresnel principle, we derive the mutual coherence function of a twisted space-time beam after propagating a distance z through atmospheric turbulence of arbitrary strength. We specialize the result to derive the ensemble-averaged irradiance and discuss how turbulence affects the beam’s spatial size, pulse width, and space-time twist. Lastly, we generate, in simulation, twisted space-time beam field realizations and propagate them through atmospheric phase screens to validate our analysis.


Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv Nov 2021

Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv

Faculty Publications

We present a new partially coherent source with spatiotemporal coupling. The stochastic light, which we call a spatiotemporal (ST) non-uniformly correlated (NUC) beam, combines space and time in an inhomogeneous (shift- or space-variant) correlation function. This results in a source that self-focuses at a controllable location in space-time, making these beams potentially useful in applications such as optical trapping, optical tweezing, and particle manipulation. We begin by developing the mutual coherence function for an ST NUC beam. We then examine its free-space propagation characteristics by deriving an expression for the mean intensity at any plane z ≥ 0. To validate …


Multi-Gaussian Random Variables For Modeling Optical Phenomena, Olga Korotkova, Milo W. Hyde Iv Aug 2021

Multi-Gaussian Random Variables For Modeling Optical Phenomena, Olga Korotkova, Milo W. Hyde Iv

Faculty Publications

A generalization of the classic Gaussian random variable to the family of multi-Gaussian (MG) random variables characterized by shape parameter M > 0, in addition to the mean and the standard deviation, is introduced. The probability density function (PDF) of the MG family members is an alternating series of Gaussian functions with suitably chosen heights and widths. In particular, for integer values of M, the series has a finite number of terms and leads to flattened profiles, while reducing to the classic Gaussian PDF for M = 1. For non-integer, positive values of M, a convergent infinite series of …


Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri R. Bose-Pillai Oct 2020

Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri R. Bose-Pillai

AFIT Patents

A vector partially coherent source (VPCS) generator includes a laser that emits coherent light; an interferometer consisting of polarizing beam splitters (PBSs) to split the laser light into its vertical and horizontal polarization components;] first and second spatial light modulators (SLMs) that respectively control the vertical and horizontal polarization components; and a control system communicatively coupled to the first and second SLMs to adjust beam shape and coherence without physically moving or removing optical elements in the interferometer.


Effect Of Ar(3p54p; 2p)+M -> Ar(3p54s; 1s)+M Branching Ratio On Optically Pumped Rare Gas Laser Performance, Daniel J. Emmons Ii, David E. Weeks Nov 2019

Effect Of Ar(3p54p; 2p)+M -> Ar(3p54s; 1s)+M Branching Ratio On Optically Pumped Rare Gas Laser Performance, Daniel J. Emmons Ii, David E. Weeks

Faculty Publications

Optically pumped rare gas laser performance is analyzed as a function of the Ar(3p54p; 2p) + M → Ar(3p54s; 1s) + M branching ratios. Due to the uncertainty in the branching ratios, a sensitivity study is performed to determine the effect on output and absorbed pump laser intensities. The analysis is performed using a radio frequency dielectric barrier discharge as the source of metastable production for a variety of Argon in Helium mixtures over pressures ranging from 200 to 500 Torr. Peak output laser intensities show a factor of 7 increase as the branching ratio is …


Nonlinear Characterizing Of A New Titanium Nitride On Aluminum Oxide Metalens, Michael A. Cumming Oct 2019

Nonlinear Characterizing Of A New Titanium Nitride On Aluminum Oxide Metalens, Michael A. Cumming

Theses and Dissertations

A sample metalens generated from Titanium Nitride deposited onto Aluminum Oxide was designed to focus at 10 microns with a beam centered at 800nm, and when analyzed with high intensity illumination was found to have a focal length of 9.650 ±.003µm at an intensity of 16.93[MW/cm2 ]. Analyzing this change by comparing it to a Fresnel Lens’ physics shows that for this lens, the effective nonlinear index of refraction is certainly greater than the nonlinear index of just Titanium Nitride itself, at −1.6239 × 10−15[m2/W] compared to the materials −1.3 × 10−15[m2 …


The Non-Mechanical Beam Steering Of Light In Reflective Inverse Diffusion, Eric K. Nagamine Mar 2019

The Non-Mechanical Beam Steering Of Light In Reflective Inverse Diffusion, Eric K. Nagamine

Theses and Dissertations

Wavefront shaping is a technique that uses spatial light modulators to conjugate the phase of light incident on a rough surface, such that the light will refocus after reflection. This refocusing effect is called reflective inverse diffusion. There currently are two different approaches used to achieve reflective inverse diffusion: iterative methods and matrix methods. Iterative methods find one phase mask which allows for reflected light to be focused at a single, specific position, with results that are immediately available and continuously improving. Matrix methods calculate the complex matrix which describes the rough surface and allows for reflected light to be …


Experimental Study: Underwater Propagation Of Super-Gaussian And Multi-Gaussian Schell-Model Partially Coherent Beams With Varying Degrees Of Spatial Coherence, Svetlana Avramov-Zamurovic, Charles L. Nelson, Milo W. Hyde Iv Feb 2019

Experimental Study: Underwater Propagation Of Super-Gaussian And Multi-Gaussian Schell-Model Partially Coherent Beams With Varying Degrees Of Spatial Coherence, Svetlana Avramov-Zamurovic, Charles L. Nelson, Milo W. Hyde Iv

Faculty Publications

We report on experiments where super-Gaussian and flat-top, multi-Gaussian Schell-model spatially partially coherent beams, with varying degrees of spatial coherence, were propagated underwater. Two scenarios were explored—calm and mechanically agitated water. The main objective of our study was the experimental comparison of the scintillation statistics. For a similar degree of coherence widths, the results show a potentially improved performance of scintillation index for the multi-Gaussian Schell-model beams as compared to the super-Gaussian beams. It should be noted that the presented results pertain only to the given experimental scenarios and further investigation is necessary to determine the scope of the findings.


Target-Based Coherent Beam Combining Of An Optical Phased Array Fed By A Broadband Laser Source, Milo W. Hyde Iv, Jack E. Mccrae, Glenn A. Tyler Jul 2017

Target-Based Coherent Beam Combining Of An Optical Phased Array Fed By A Broadband Laser Source, Milo W. Hyde Iv, Jack E. Mccrae, Glenn A. Tyler

Faculty Publications

The target-based phasing of an optical phased array (OPA) fed by a broadband master oscillator laser source is investigated. The specific scenario examined here considers an OPA phasing through atmospheric turbulence on a rough curved object. An analytical expression for the detected or received intensity is derived. Gleaned from this expression are the conditions under which target-based phasing is possible. A detailed OPA wave optics simulation is performed to validate the theoretical findings. Key aspects of the simulation set-up as well as the results are thoroughly discussed.


Reflective Inverse Diffusion, Kenneth W. Burgi, Jessica Ullom, Michael A. Marciniak, Mark E. Oxley Nov 2016

Reflective Inverse Diffusion, Kenneth W. Burgi, Jessica Ullom, Michael A. Marciniak, Mark E. Oxley

Faculty Publications

Phase front modulation was previously used to refocus light after transmission through scattering media. This process has been adapted here to work in reflection. A liquid crystal spatial light modulator is used to conjugate the phase scattering properties of diffuse reflectors to produce a converging phase front just after reflection. The resultant focused spot had intensity enhancement values between 13 and 122 depending on the type of reflector. The intensity enhancement of more specular materials was greater in the specular region, while diffuse reflector materials achieved a greater enhancement in non-specular regions, facilitating non-mechanical steering of the focused spot. Scalar …


Laser Demonstration And Performance Characterization Of An Optically Pumped Alkali Laser System, Clifford V. Sulham Sep 2010

Laser Demonstration And Performance Characterization Of An Optically Pumped Alkali Laser System, Clifford V. Sulham

Theses and Dissertations

Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as …


Numerical Investigation Of Statistical Turbulence Effects On Beam Propagation Through 2-D Shear Mixing Layer, James C. Bowers Mar 2010

Numerical Investigation Of Statistical Turbulence Effects On Beam Propagation Through 2-D Shear Mixing Layer, James C. Bowers

Theses and Dissertations

A methodology is developed for determining the validity of making a statistical turbulent approach using Kolmogorov theory to an aero-optical turbulent ow. Kolmogorov theory provides a stochastic method that has a greatly simplified and robust method for calculating atmospheric turbulence effects on optical beam propagation, which could simplify similar approaches to chaotic aero-optical flows. A 2-D laminar Navier-Stokes CFD Solver (AVUS) is run over a splitter plate type geometry to create an aero-optical like shear mixing layer turbulence field. A Matlab algorithm is developed to import the flow data and calculates the structure functions, structure constant, and Fried Parameter ( …


Theoretical Model Analysis Of Absorption Of A Three Level Diode Pumped Alkali Laser, Charlton D. Lewis Ii Mar 2009

Theoretical Model Analysis Of Absorption Of A Three Level Diode Pumped Alkali Laser, Charlton D. Lewis Ii

Theses and Dissertations

This paper models the absorption phenomena of light in a three level diode pumped alkali laser system. Specifically this model calculates for a user defined set of system parameters the attenuation of the input pump beam and characteristics of the bleached wave. Using Wolfram's Mathematical 6.0 software all necessary physics for an accurate description of absorption was modeled from first principles: energy levels, cross sections, spin-orbit kinetic processes, saturation frequencies, pump attenuation, and differential transmittance, which is a representation of the bleached wave. A specific DPAL scenario was simulated, 455K system temperature, alkali concentration of 6.1 - 1013, …


Use Of A Continuous Wave Raman Fiber Laser In Graded-Index Multimode Fiber For Srs Beam Combination, Nathan B. Terry, Kevin T. Engel, Thomas G. Alley, Timothy H. Russell Jan 2007

Use Of A Continuous Wave Raman Fiber Laser In Graded-Index Multimode Fiber For Srs Beam Combination, Nathan B. Terry, Kevin T. Engel, Thomas G. Alley, Timothy H. Russell

Faculty Publications

We report using a Raman fiber laser (RFL) based on a multimode graded-index fiber as a novel method for beam combination of two continuous wave pump beams. Due to stimulated Raman scattering, the RFL generates a Stokes beam which can be up to 300% brighter than the pump beams. Up to 5.8 W of Stokes power is generated with an optical conversion efficiency of 56%.


Single-Mode Raman Fiber Laser In A Multimode Fiber, Matthew B. Crookston Mar 2003

Single-Mode Raman Fiber Laser In A Multimode Fiber, Matthew B. Crookston

Theses and Dissertations

The feasibility of a transverse single-mode Raman fiber laser using a multimode fiber has been investigated. The Raman fiber laser operates in low-order transverse modes despite the fact the fiber supports multimode beam propagation. The performance characteristics of the Raman fiber laser are compared with those of the single-pass SRS beam.


Optical Characterization Of Antimony-Based, Types-I And Ii, Multiple Quantum-Well Semiconductor Structures For Mid-Infrared Laser Applications, Edward G. Ferguson Mar 2003

Optical Characterization Of Antimony-Based, Types-I And Ii, Multiple Quantum-Well Semiconductor Structures For Mid-Infrared Laser Applications, Edward G. Ferguson

Theses and Dissertations

This experiment characterizes antimony-based, multiple quantum-well, types-I and -II, semiconductor samples designed for laser applications. The samples emit light in the 3-5-micron range to exploit an atmospheric transmission window, making them ideal for infrared (IR)-seeking missile countermeasures. Photoluminescence (PL) spectra were collected and yielded bandgap (E(sub g)) dependence-on-temperature relationships. The type-I sample was found to follow the Varshni equation, while the type-II samples showed a rise with temperature in a portion of the curve that should be linear according to the Varshni equation. The type-II samples followed the Varshni equation well at higher temperature. The PL study indicated that the …


Distributed Beacon Requirements For Branch Point Tolerant Laser Beam Compensation In Extended Atmospheric Turbulence, Virgil E. Zetterlind Iii Mar 2002

Distributed Beacon Requirements For Branch Point Tolerant Laser Beam Compensation In Extended Atmospheric Turbulence, Virgil E. Zetterlind Iii

Theses and Dissertations

Branch point tolerant phase reconstructors can vastly improve adaptive optic system performance in extended atmospheric turbulence. This thesis explores the performance bounds of two such reconstructors Goldstein's algorithm and hidden phase. A least squares reconstructor is implemented for comparison. System performance is presented for various scenarios, including correction time-delays, wave-front sensor noise, and extended beacons. These scenarios are of interest for laser communication and directed energy systems such as Airborne Laser. Performance bounds are obtained through wave-optics simulation. The extended beacon propagation geometry approximates the USAF AFRL-DE North Oscura Peak range. Results show that branch point tolerant reconstructors outperform least …


Development Of A Tm:Ho:Ylf-Laser-Pumped Orientation-Patterned Gallium Arsenide Optical Parametric Oscillator, Michael D. Harm Mar 2002

Development Of A Tm:Ho:Ylf-Laser-Pumped Orientation-Patterned Gallium Arsenide Optical Parametric Oscillator, Michael D. Harm

Theses and Dissertations

Coherent optical sources in the mid-infrared region (mid-IR) are important fundamental tools for infrared countermeasures and battlefield remote sensing. Nonlinear optical effects can be applied to convert existing near-IR laser sources to radiate in the mid-IR. This research focused on achieving such a conversion with a quasi-phase matched optical parametric oscillators using orientation-patterned gallium arsenide (OPGaAs), a material that can be quasi-phased matched by periodically reversing the crystal structure during the epitaxial growth process. Although non-linear optical conversion was not ultimately achieved during this research, many valuable lessons were learned from working with this material. This thesis reviews the theory …


Investigation Of Laser Beam Combining And Cleanup Via Seeded Stimulated Brillouin Scattering In Multimode Optical Fibers, Bryan J. Choi Mar 2000

Investigation Of Laser Beam Combining And Cleanup Via Seeded Stimulated Brillouin Scattering In Multimode Optical Fibers, Bryan J. Choi

Theses and Dissertations

The purpose of this thesis research was to determine if stimulated Brillouin scattering amplification in multimode optical fibers would exhibit the same laser beam combining and clean-up properties exhibited by SBS oscillation, and to characterize the Brillouin amplification process in a multimode optical fiber. Beam combining in multimode fibers via SBS is being considered as a method of combining low power laser beams into a single beam having higher power and superior spatial coherence for applications such as electro-optic countermeasures. Experimental results demonstrate seeding a 9.5 mm fiber significantly reduced the pump power required to initiate SBS. An amplified Stokes …


Experimental Investigation And Computer Modeling Of Optical Switching In Distributed Bragg Reflector And Vertical Cavity Surface Emitting Laser Structures, Richard J. Bagnell Dec 1995

Experimental Investigation And Computer Modeling Of Optical Switching In Distributed Bragg Reflector And Vertical Cavity Surface Emitting Laser Structures, Richard J. Bagnell

Theses and Dissertations

The optical switching capabilities of Distributed Bragg Reflector (DBR) structures, including Vertical Cavity Surface Emitting Lasers (VCSELs) are examined. Reflectivity switching is demonstrated using both thermal and carrier generated effects to alter the DBR/VCSEL layers' refractive indices. Optical bistability is demonstrated at room temperature, under CW photopumped excitation. The optical bistability hysteresis is controllable by spectral location of the pump on the stop band edge. In the VCSEL, reflective bistability is also evidenced; additionally, this bistability is accompanied by a bistability in the VCSEL lasing output intensity, spot size, and wavelength. Modeling of the DBR/VCSEL thermally induced bistability was accomplished …