Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 127

Full-Text Articles in Engineering Physics

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise Dec 2023

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman Sep 2023

Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman

Directivity

The directivity function of a played musical instrument describes the angular dependence of its acoustic radiation and diffraction about the instrument, musician, and musician’s chair. Directivity influences sound in rehearsal, performance, and recording environments and signals in audio systems. Because high-resolution, spherically comprehensive measurements of played musical instruments have been unavailable in the past, the authors have undertaken research to produce and share such data for studies of musical instruments, simulations of acoustical environments, optimizations of microphone placements, and other applications. The authors acquired the data from repeated chromatic scales produced by a trumpet played at mezzo-forte in an anechoic …


Study Of Microphonic Effects On The C100 Cryomodule For High Energy Electron Beam Accelerators, Caleb James Hull Aug 2023

Study Of Microphonic Effects On The C100 Cryomodule For High Energy Electron Beam Accelerators, Caleb James Hull

Mechanical & Aerospace Engineering Theses & Dissertations

The Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson National Laboratory (JLab) is a particle accelerator which can accelerate an electron beam to relativistic speeds and apply the beam onto target samples. The C100 superconducting radio frequency (SRF) cavity is the primary accelerating structure of the C100 cryomodule, one of the many cryomodules which compose the CEBAF linear accelerator. SRF cavities are particularly sensitive to internal and external vibrations that can result in a phenomenon called microphonics which degrade the operational stability of a cryomodule.

The purpose of this thesis is to investigate the significance of mechanical disturbances on …


Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin May 2023

Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin

All Dissertations

Inverse problems involve extracting the internal structure of a physical system from noisy measurement data. In many fields, the Bayesian inference is used to address the ill-conditioned nature of the inverse problem by incorporating prior information through an initial distribution. In the nonparametric Bayesian framework, surrogate models such as Gaussian Processes or Deep Neural Networks are used as flexible and effective probabilistic modeling tools to overcome the high-dimensional curse and reduce computational costs. In practical systems and computer models, uncertainties can be addressed through parameter calibration, sensitivity analysis, and uncertainty quantification, leading to improved reliability and robustness of decision and …


Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd Jan 2023

Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd

Directivity

No abstract provided.


Analytical Heat Transfer Modeling Of The Microwave Heating Process: A Focus On Carbon Black, Craig Offutt Jan 2023

Analytical Heat Transfer Modeling Of The Microwave Heating Process: A Focus On Carbon Black, Craig Offutt

Graduate Theses, Dissertations, and Problem Reports

Electronic waste (e-waste) has become a significant environmental issue due to the rapid advancement of technology, increasing demand for electronic devices, and shorter lifespan of electronics. One critical step in processing the e-waste involves ball milling as a means of preparing the recycling e-waste for the recovery of critical materials. Ball milling is a technique that involves the mechanical crushing and grinding of electronic waste to reduce its size and improve its reactivity during recovery. Our focused recovery technique is based on a microwave recovery technique of these critical materials from e-waste. The size and distribution of the e-waste with …


Solid Thermal Storage As An Energy Storage Device In Insulated Solar Electric Cookers: Thermal Modeling And Experiment, Michael Antonio Fernandez Jun 2022

Solid Thermal Storage As An Energy Storage Device In Insulated Solar Electric Cookers: Thermal Modeling And Experiment, Michael Antonio Fernandez

Physics

The use of solid thermal storage (STS) as an energy storage device in insulated solar electric cookers (ISEC) was explored using a thermal simulation before retrofitting an existing cooker without energy storage and testing it under several conditions. STS sizing, material selection, and geometry were examined from both theoretical and practical perspectives and re-examined following experimental results. Characterization of the system’s thermal interfaces and methods to improve their thermal conductivities were investigated resulting in several performance enhancements to the system.


A Computational Approach For The Estimation Of Elastic Behavior Of Metal Matrix Composites, Emmanuel Michalakis Apr 2022

A Computational Approach For The Estimation Of Elastic Behavior Of Metal Matrix Composites, Emmanuel Michalakis

ME 4233/6233 Fundamentals of FEA

Composite materials are being widely used in many industries for their properties and efficiency. The current work presents a computational approach that can estimate the elastic behavior of metal composites and porous materials using finite element models of representative volume elements (RVEs) which have been used to test and design particulate composite materials. The required size of the RVE for the determination of elastic properties, the effects of the elastic modulus fraction Einc/Emat on the homogenized elasticity and the convergence of the homogenized properties E11, E22 and E33 with the size of the RVE is explored.


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman Mar 2022

Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman

Directivity

This directivity data set for a KEMAR head head-and-torso simulator (HATS) includes head orientations in 14 directions in 5° steps starting from 0° to 40° and then in 10° steps from 40° to 90°. The full spherical measurements followed at an a = 0.97 m radius with the mouth aperture at the spherical center. The sampling density and distribution followed the AES 5° dual-equiangular sampling standard, omitting the south pole (θ = 180°). Thus, each spherical directivity assessment included 36 polar-angle θ samples and 72 azimuthal-angle ϕ samples. The presented data include 22 1/3-octave bands, ranging from 80 Hz …


Designing Cryogenic Strain Device For 2d Materials, Jake Carter May 2021

Designing Cryogenic Strain Device For 2d Materials, Jake Carter

Mechanical Engineering Undergraduate Honors Theses

The Churchill lab working within the Physics Department at the University of Arkansas is working to create important quantum states including weak topological insulators (TIs) through the use of symmetry engineering and topological electronic states in two-dimensional (2D) crystals of WHM materials. Experimental results of these topological states have been obstructed due to the difficulty to perform controlled in situ strain. This project strives to create a mount to utilize a piezoelectric nanopositioner within cryostats achieving an in situ strain that creates the quantum states the lab is looking to observe. This report also examines the necessary equations to determine …


Design Of Smart Trashcan, Haoran Song Apr 2021

Design Of Smart Trashcan, Haoran Song

Senior Theses

A smart trashcan has been designed which can bring convenience to people for throwing their garbage away during the COVID-19 pandemic. A prototype is made from cardboard to demonstrate its function. This trashcan can sense people who are coming and leaving, and it can open and close automatically. The trashcan is powered by solar energy. A solar panel is mounted on top of the trashcan supporter. This design is specifically for use in China.


Multiscale Investigation Of Dropwise Condensation On A Smooth Hydrophilic Surface, Shahab Bayani Ahangar Jan 2021

Multiscale Investigation Of Dropwise Condensation On A Smooth Hydrophilic Surface, Shahab Bayani Ahangar

Dissertations, Master's Theses and Master's Reports

The objective of this work is to identify the fundamental mechanism of dropwise condensation on a smooth solid surface by probing the solid-vapor interface during phase-change to evaluate the existence and structure of the thin film and the initial nucleus that develop during condensation. In this work, an automated Surface Plasmon Resonance imaging (SPRi) instrument with the ability to perform imaging in intensity modulation and angular modulation is developed. The SPRi instrument is used to probe (in three dimensions) the adsorbed film that forms on the substrate during dropwise condensation. SPRi with a lateral resolution of ~ 4-10 μm, thickness …


Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom Jan 2021

Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom

Physics Faculty Publications

Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1-2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200-240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration …


Development Of Synthetic Coal Char Simulant For Microwave Conversion Studies: A Computationally-Driven Approach, Kevin A. Hager Jan 2021

Development Of Synthetic Coal Char Simulant For Microwave Conversion Studies: A Computationally-Driven Approach, Kevin A. Hager

Graduate Theses, Dissertations, and Problem Reports

Recent experimental demonstration of new reaction windows for coal char/methane reactions that are less energy-intensive, provides innovation for modular reactors. However, the correlation of the exact mechanism for the enhancement of these reaction windows is not certain. This study investigates the simplification of these experimental studies by developing a well-characterized coal char simulant. The approach involves using a computational approach to screen macroscopic composition to replicate the dielectric and compositional response of actual char. This study is focused on PRB coal char. A discrete element method (DEM) technique was used to simulate the packing of coal chars to give the …


Numerical Simulation Of Nonlinear Vibrations Of Discrete Mass With Harmonic Force Perturbation, M. Yusupov, B. A. Akhmedov, Olga Karpova Dec 2020

Numerical Simulation Of Nonlinear Vibrations Of Discrete Mass With Harmonic Force Perturbation, M. Yusupov, B. A. Akhmedov, Olga Karpova

Acta of Turin Polytechnic University in Tashkent

The problem of vibration of a single-mass system under the force excitation of vibration associated with a fixed base by a weightless nonlinear viscoelastic spring is considered. To take into account the rheological properties of the spring material, the Boltzmann-Volterra principle was used. Mathematical models of the problem under consideration are obtained, which are described by integro-differential equations. A solution method based on the use of quadrature formulas has been developed and a computer program has been compiled on its basis, the results obtained are presented in the form of graphs. The influence of nonlinear and rheological properties of a …


1. Test Data, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

1. Test Data, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains recorded and processed bubble sounds under different conditions: a few bubbles vs. constant flow bubbles. Each condition is tested with nitrogen and with methane.


4. Metadata Files, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

4. Metadata Files, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all ReadMe files for test data, modeling data, and localization data, as well as the corresponding codes.


5. Programs And Algorithms, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

5. Programs And Algorithms, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all codes for the study.


6. Supplemental Materials, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

6. Supplemental Materials, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all conference presentations, manuscripts, technical reports, posters.


2. Modeling, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

2. Modeling, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains the results for acoustic bubble modeling.


3. Localization, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

3. Localization, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains the results for oil leakage source localization.


Dynamic Neuromechanical Sets For Locomotion, Aravind Sundararajan Dec 2020

Dynamic Neuromechanical Sets For Locomotion, Aravind Sundararajan

Doctoral Dissertations

Most biological systems employ multiple redundant actuators, which is a complicated problem of controls and analysis. Unless assumptions about how the brain and body work together, and assumptions about how the body prioritizes tasks are applied, it is not possible to find the actuator controls. The purpose of this research is to develop computational tools for the analysis of arbitrary musculoskeletal models that employ redundant actuators. Instead of relying primarily on optimization frameworks and numerical methods or task prioritization schemes used typically in biomechanics to find a singular solution for actuator controls, tools for feasible sets analysis are instead developed …


Cooking Systems Using Aluminum Foam, Ryan Tetsuo Mizukami Aug 2020

Cooking Systems Using Aluminum Foam, Ryan Tetsuo Mizukami

Physics

In developing countries, the use of wood burning fires for cooking is cause for illness and death. With this in mind, research was conducted to develop a solar cooking device capable of cooking of soup within 15 mins in order to reduce the negative impacts of cooking with wood. Current methods of solar-based cooking, such as solar concentrators and solar tube ovens, are impractical. A small solar panel is a cost-effective way to produce energy but will not produce enough power to cook within a reasonable amount of time. Even if it is assumed that all of the energy produced …


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


Characterization And Computational Modelling For The Garnet Oxide Solid State Electrolyte Ta-Llzo, Colin A. Versnick Dec 2019

Characterization And Computational Modelling For The Garnet Oxide Solid State Electrolyte Ta-Llzo, Colin A. Versnick

Electronic Thesis and Dissertation Repository

The all-solid-state-battery (ASSB) serves as a promising candidate for next generation lithium ion batteries for significant improvements in battery safety, capacity, and longevity. Of the material candidates researched to replace the conventionally used liquid electrolyte, the garnet oxide Ta-LLZO (Li6.4La3Zr1.4Ta0.6O12) has received much attention thanks to its high chemical and electrochemical stability, and ionic conductivity which rivals that of liquid electrolytes. While much investigation has taken place regarding the electrochemical performance of Ta-LLZO, much less is known about the micromechanics, including microstructural characterization, stress and strain development, and material failure …


Average Speech Directivity, Samuel D. Bellows, Claire M. Pincock, Jennifer K. Whiting, Timothy W. Leishman Nov 2019

Average Speech Directivity, Samuel D. Bellows, Claire M. Pincock, Jennifer K. Whiting, Timothy W. Leishman

Directivity

Speech directivity describes the angular dependence of acoustic radiation from a talker’s mouth and nostrils and diffraction about his or her body and chair (if seated). It is an essential physical aspect of communication affecting sounds and signals in acoustical environments, audio, and telecommunication systems. Because high-resolution, spherically comprehensive measurements of live, phonetically balanced speech have been unavailable in the past, the authors have undertaken research to produce and share such data for simulations of acoustical environments, optimizations of microphone placements, speech studies, and other applications. The measurements included three male and three female talkers who repeated phonetically balanced passages …