Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2011

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 68

Full-Text Articles in Condensed Matter Physics

Quantum Coherence And Interference In Metallic Photonic Crystals And Hybrid Systems, Ali Hatef Dec 2011

Quantum Coherence And Interference In Metallic Photonic Crystals And Hybrid Systems, Ali Hatef

Electronic Thesis and Dissertation Repository

In the first part of the thesis, we study the absorption coefficient of quantum dots doped in metallic photonic crystals under different circumferences. We study numerically the temporal evolution of the absorption coefficient profile where a probe field is applied to monitor the absorption process in two cases, when quantum dots are embedded lightly and densely. We also studied the effect of a changing plasma frequency on the absorption profile of quantum dots two possible field configurations. We show that the changes in plasma energy can take the system from the absorption region to the transparent and gain region.

As …


Two Dimensional Electron Gas At Oxide Interfaces, Karolina Janicka Dec 2011

Two Dimensional Electron Gas At Oxide Interfaces, Karolina Janicka

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Extraordinary phenomena can occur at the interface between two oxide materials. A spectacular example is a formation of a two-dimensional electron gas (2DEG) at the SrTiO3/LaAlO3 interface. In this dissertation the properties of the 2DEG are investigated from first principles.

The spatial extent of the 2DEG formed at the SrTiO3/LaAlO3 n-type interface is studied. It is shown that the confinement of the 2DEG is controlled by metal induced gap states formed in the band gap of SrTiO3. The confinement width is then determined by the attenuation length of the metal induced gap …


An Investigation Of Pinning Landscapes With Engineered Defects: Contact-Free Critical Current Density Measurements, John William Sinclair Dec 2011

An Investigation Of Pinning Landscapes With Engineered Defects: Contact-Free Critical Current Density Measurements, John William Sinclair

Doctoral Dissertations

Pinning landscapes in modern second generation coated conductors are excellent candidates for studies of vortex pinning. The ability to produce engineered defects in thin films of high temperature superconductors allows one to investigate representative distinct pinning sites, with the objective of understanding how different pinning centers contribute, compete and evolve under varying conditions of magnetic field strength and orientation, and temperature.New contact-free methods were developed specifically to investigate this system in new ways, especially the dependence of the critical current density Jc on orientation of the magnetic field. A superconducting quantum interference device (SQUID)-based magnetometer was used to determine angular …


Spectroscopic Studies Of Melamine At High Pressure, Martin Donald Galley Dec 2011

Spectroscopic Studies Of Melamine At High Pressure, Martin Donald Galley

UNLV Theses, Dissertations, Professional Papers, and Capstones

We have performed mid- and far- Infra Red (IR) absorption, Raman spectroscopy, and angular dispersive x-ray diffraction (XRD) studies on melamine under high pressure and room temperature. We have verified the presence of two prior reported phase transitions, the first between 1-2 GPa, and the second between 7-9 GPa. We have also found evidence of a third unreported phase transition between 14-16 GPa, during which, there was a sudden disappearance of all low energy peaks (-1 ) in both the Raman and IR spectra. The far-IR peak movement experiences a discontinuity as the rate of peak movement suddenly changes. …


Electrical Detection Of Mechanical Resonance In Nanotubes And Semiconducting Nanowires, Doyl Dickel Dec 2011

Electrical Detection Of Mechanical Resonance In Nanotubes And Semiconducting Nanowires, Doyl Dickel

All Dissertations

In recent years, there has been substantial interest in the development of microelectro-mechanical systems (MEMS) and even nanoelectro-mechanical systems (NEMS) for use in a wide variety of applications both as experimental tools (refs) and in a continuing effort to decrease the size and cost and increase the efficiency of electrical components. In particular, cantilevered nanometer beams have been a recent focus due to a number of interesting properties, including enhanced field emission, high tensile strength, and piezoelectric properties. The ability to accurately determine the electrical and mechanical properties of these cantilevers is paramount in assessing their feasibility as MEMS and …


First-Principles Studies On Physical And Chemical Properties Of Nanostructures, Menghao Wu Dec 2011

First-Principles Studies On Physical And Chemical Properties Of Nanostructures, Menghao Wu

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The physical and chemical properties of decorated graphene and graphene ribbons, single-layer III-V systems, three-dimensional carbon and BN foam, and transition-metal-molecular sandwich nanowires have been investigated by first-principle calculations and their potential applications have been predicted. First, it is shown that zigzag graphene nanoribbons (ZGNRs) can be converted into half metal when their edges are decorated by some chemical functional groups, and the half-metalicity is induced by chemical potential difference between two edges when one edge is decorated by electron-donating group like –OH and the other edge is decorated by electron-accepting group like –F, -NH2, -N(CH3) …


Thermodynamic Limit To Photonic-Plasmonic Light-Trapping In Thin Films On Metals, Eric A. Schiff Nov 2011

Thermodynamic Limit To Photonic-Plasmonic Light-Trapping In Thin Films On Metals, Eric A. Schiff

Physics - All Scholarship

We calculate the maximum optical absorptance enhancements in thin semiconductor films on metals due to structures that diffuse light and couple it to surface plasmon polaritons. The calculations can be used to estimate plasmonic effects on light-trapping in solar cells. The calculations are based on the statistical distribution of energy in the electromagnetic modes of the structure, which include surface plasmon polariton modes at the metal interface as well as the trapped waveguide modes in the film. The enhancement has the form 4n2+/h (n – film refractive index, λ – optical wavelength, h …


Transport And Magnetic Critical Current In Superconducting Mgb2 Wires, J. Horvat, W. K. Yeoh, J. H. Kim, S. X. Dou Nov 2011

Transport And Magnetic Critical Current In Superconducting Mgb2 Wires, J. Horvat, W. K. Yeoh, J. H. Kim, S. X. Dou

Shi Xue Dou

Direct comparison of the magnetic and transport critical current density (Jc) for the same pieces of copper-sheathed MgB2 wires shows a large discrepancy in magnitude and field dependence of the two. The value of magnetic Jc can differ from the value of transport Jc by a factor of 10 or more. This discrepancy does not occur merely because of the difference in the voltage at which the magnetic and transport Jc are measured, but mainly because of the specific microstructure of MgB2. Such microstructure results in superconducting screening on at least two different length-scales, despite the absence of weak links …


Peeling Adhesive Tape Emits Electromagnetic Radiation At Terahertz Frequencies, J. Horvat, R. A. Lewis Nov 2011

Peeling Adhesive Tape Emits Electromagnetic Radiation At Terahertz Frequencies, J. Horvat, R. A. Lewis

Roger A. Lewis

An unusual concept for a simple and inexpensive terahertz source is presented: unpeeling adhesive tape. The observed spectrum of this terahertz radiation exhibits a peak at 2 THz and a broader peak at 18 THz. The radiation is not polarized. The mechanism of terahertz radiation is tribocharging of the adhesive tape and subsequent discharge, possibly bremsstrahlung with absorption or energy density focusing during the dielectric breakdown of a gas. The accompanying optical emission is also a consequence of tribocharging.


Peeling Adhesive Tape Emits Electromagnetic Radiation At Terahertz Frequencies, J. Horvat, R. A. Lewis Nov 2011

Peeling Adhesive Tape Emits Electromagnetic Radiation At Terahertz Frequencies, J. Horvat, R. A. Lewis

Josip Horvat

An unusual concept for a simple and inexpensive terahertz source is presented: unpeeling adhesive tape. The observed spectrum of this terahertz radiation exhibits a peak at 2 THz and a broader peak at 18 THz. The radiation is not polarized. The mechanism of terahertz radiation is tribocharging of the adhesive tape and subsequent discharge, possibly bremsstrahlung with absorption or energy density focusing during the dielectric breakdown of a gas. The accompanying optical emission is also a consequence of tribocharging.


Wave-Function Functionals For The Density, Marlina Slamet, Xiao-Yin Pan, Viraht Sahni Nov 2011

Wave-Function Functionals For The Density, Marlina Slamet, Xiao-Yin Pan, Viraht Sahni

Publications and Research

We extend the idea of the constrained-search variational method for the construction of wave-function functionals psi[chi] of functions chi. The search is constrained to those functions chi such that psi[chi] reproduces the density rho(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals psi[chi] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals psi[chi] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle …


Thermodynamics Of Magnetic Multilayers, Tathagata Mukherjee Nov 2011

Thermodynamics Of Magnetic Multilayers, Tathagata Mukherjee

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Our interest in thermodynamics of magnetic thin film heterostructure began by exploring the possibility to use magnetic nanostructures in the search for optimized magnetocaloric materials for potential room temperature refrigeration. In the present thesis magnetic thin film heterostructures are experimentally realized by Molecular Beam Epitaxy (MBE) and Pulsed Laser Deposition (PLD). Co/Cr and Fe/Cr superlattices were fabricated using mean-field theoretical concepts as guiding principles. The potential of artificial antiferromagnets for near room-temperature refrigeration is explored. Magnetocaloric properties are deduced from measurements of the temperature and field dependence of the magnetization of our samples. The effects of intra-plane and inter-plane exchange …


Self Assembly And Interface Chemistry Of Non-Metallated Tetraphenyl Porphyrin, Geoffrey Rojas Oct 2011

Self Assembly And Interface Chemistry Of Non-Metallated Tetraphenyl Porphyrin, Geoffrey Rojas

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The study of the electronic properties and geometrical arrangement of 5, 10, 15, 20-tetraphenyl-21H, 23H-porphine on metal is presented. The systems were analyzed using both scanning tunneling microscopy and photoelectron spectroscopy and compared across surfaces to determine how the interface chemistry between the metal and molecule affect the self-assembly and band structure of the adsorbed species. The molecules are found to self-assemble and grow on the Ag(111) surface in a manner described by similar models to weakly bound metal/metal surface systems. The CH-pi bonds between molecules are found to largely determine the relative inter-molecular arrangement, while the more isotropic van …


Magneto-Optical Imaging And Current Profiling On Superconductors, Frederick S. Wells Sep 2011

Magneto-Optical Imaging And Current Profiling On Superconductors, Frederick S. Wells

Frederick S Wells

Magneto-optical imaging (MOI) is a useful and highly versatile technique for the investigation of magnetic and current-carrying properties of superconductors. High-speed imaging is particularly important as superconductors often exhibit interesting magnetic behaviour over short timescales, such as the behaviour of individual flux vortices during magnetic flux penetration. The following method was developed to facilitate the high-speed acquisition of magneto-optical images of superconducting samples, and the determination of magnetic field and current flow data from these images. This method may be the first to allow current mapping of short timescale magnetic events in superconductors.
Magneto-optical images were acquired using a high-speed …


Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim Sep 2011

Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim

Electronic Thesis and Dissertation Repository

The discovery of graphene - a 2D material with superior physical properties - in 2004 was important for the intensive global research to find alternatives to three-dimensional (3D) semiconductor materials in industry. At the same time there have been exciting advances for 2D magnetic materials on the nanometer scale. The superior properties of graphene are mainly attributed to its crystal structure and its relatively short-range interactions. These properties show that natural and artificial 2D materials are promising for new applications.

In this thesis we have carried out a comprehensive investigation of the effects of the 2D lattice structures, the roles …


Hyperthermal H2 Induced C–H Bond Cleavage: A Novel Approach To Cross-Linking Of Organic Molecules, Tomas Trebicky Sep 2011

Hyperthermal H2 Induced C–H Bond Cleavage: A Novel Approach To Cross-Linking Of Organic Molecules, Tomas Trebicky

Electronic Thesis and Dissertation Repository

The development of simple and effective methods of incorporating molecular moieties with desirable properties into new functional materials is one of the ultimate goals of material scientists. The work presented in this thesis demonstrates an easy way to accomplish this using a beam of gaseous H2, which we call hyperthermal hydrogen induced cross-linking (HHIC). We prove theoretically and experimentally that when the kinetic energy of H2 is raised to ~20 eV, it becomes a light-mass projectile which is energetic enough to knock hydrogen atoms off of organic molecules, but not other heavier atoms. By developing a reactor …


Functional Two-Dimensional Electronic Gases At Interfaces Of Oxide Heterostructures, Yong Wang Aug 2011

Functional Two-Dimensional Electronic Gases At Interfaces Of Oxide Heterostructures, Yong Wang

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

A quasi-two dimensional electron gas (2DEG) in oxide heterostructures such as LaAlO3/SrTiO3 has unique properties that are promising for applications in all-oxide electronic devices. In this dissertation, we focus on understanding and predicting novel properties of the 2DEG by performing first-principles electronic calculations within the frame work of density-functional theory (DFT).

The effects of polarization in all-oxide heterostructures incorporating different ferroelectric constituents, such as KNbO3/ATiO3 (A = Sr, Ba, Pb), are investigated. It is found that screening charge at the interface that counteracts the depolarizing electric field in the ferroelectric material significantly changes the …


Microrheology And Microstructure Of Poly(Vinyl Alcohol)-Based Physical Gels, Nan Yang Aug 2011

Microrheology And Microstructure Of Poly(Vinyl Alcohol)-Based Physical Gels, Nan Yang

Electronic Thesis and Dissertation Repository

We study the microrheology and microstructure of physically cross-linked poly(vinyl alcohol) (PVA) gels using atomic force microscopy, dynamic light scattering and particle tracking. We compare the microscopic rheological properties with the bulk properties measured using conventional shear rheometry, and correlate the rheological properties to the structure of the materials.

We develop a new technique for investigating the viscoelastic properties of soft materials using the atomic force microscope. The electronic feedback of an atomic force microscope is modified by adding a small oscillatory voltage to the deflection signal, and the amplitude and phase of the motion of the sample stage is …


Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla Aug 2011

Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla

Shireen Adenwalla Papers

We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous function of thickness and …


Transport And Optical Properties Of Quantized Low-Dimensional Systems, Xiaoguang Li Aug 2011

Transport And Optical Properties Of Quantized Low-Dimensional Systems, Xiaoguang Li

Doctoral Dissertations

In this thesis, we present a systematic investigation of the static and dynamic response properties of low-dimensional systems, using a variety of theoretical techniques ranging from time dependent density functional theory to the recursive Green's function method.

As typical low-dimensional systems, metal nanostructures can strongly interact with an electric field to support surface plasmons, making their optical properties extremely attractive in both fundamental and applied aspects. We have investigated the energy broadening of surface plasmons in metal structures of reduced dimensionality, where Landau damping is the dominant dissipation channel and presents an intrinsic limitation to plasmonics technology. We show that …


Electronic Excitations In Ytio3 Using Tddft And Electronic Structure Using A Multiresolution Framework, William Scott Thornton Aug 2011

Electronic Excitations In Ytio3 Using Tddft And Electronic Structure Using A Multiresolution Framework, William Scott Thornton

Doctoral Dissertations

We performed ab initio studies of the electronic excitation spectra of the ferro- magnetic, Mott-insulator YTiO3 using density functional theory (DFT) and time- dependent density functional theory (TDDFT). In the ground state description, we included a Hubbard U to account for the strong correlations present within the d states on the cation. The excitation spectra was calculated using TDDFT linear response formalism in both the optical limit and the limit of large wavevector transfer. In order to identify the local d-d transitions in the response, we also computed the density response of YTiO3 using a novel technique where the basis …


Raman Spectroscopic Study Of Solid Solution Spinel Oxides, Brian D. Hosterman Aug 2011

Raman Spectroscopic Study Of Solid Solution Spinel Oxides, Brian D. Hosterman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Solid solution spinel oxides of composition MgxNi1−xCr2O4, NiFexCr2−xO4, and FexCr3−xO4 were synthesized and characterized using x-ray diffraction and Raman spectroscopy. Frequencies of the Raman-active modes are tracked as the metal cations within the spinel lattice are exchanged. This gives information about the dependence of the lattice vibrations on the tetrahedral and octahedral cations. The highest-frequency Raman-active mode, A1g, is unaffected by substitution of the divalent tetrahedral cation, whereas the lower frequency vibrations are more strongly affected by substitution of the tetrahedral cation. The change in wavenumber of many phonons is nonlinear upon cation exchange. All detected modes of MgxNi1−xCr2O4 and …


Effects Of Surface States, Defects And Dopants On The Optical And Magnetic Properties Of Low-Dimensional Materials, Ramakrishna Podila Aug 2011

Effects Of Surface States, Defects And Dopants On The Optical And Magnetic Properties Of Low-Dimensional Materials, Ramakrishna Podila

All Dissertations

Nanomaterials have attracted the attention of researchers from various fields due to their unique features (that are otherwise absent in the bulk) such as quantum confinement, high surface to volume ratio, ability for surface modification etc. Since the discovery of fullerenes and carbon nanotubes, several synthesis techniques have been developed for nanomaterial growth. However, different control parameters in different synthesis techniques often result in nanostructures with varying defects that may alter their fundamental behavior. Such defects or disorder in the crystal lattice can lead to the disruption of lattice symmetry. The defect-induced symmetry lowering (or breaking) effects play a vital …


Decay Of Nuclear Hyperpolarization In Silicon Microparticles, M. Lee, M. C. Cassidy, C. Ramanathan, C. M. Marcus Jul 2011

Decay Of Nuclear Hyperpolarization In Silicon Microparticles, M. Lee, M. C. Cassidy, C. Ramanathan, C. M. Marcus

Dartmouth Scholarship

We investigate the low-field relaxation of nuclear hyperpolarization in undoped and highly doped silicon microparticles at room temperature following removal from high field. For nominally undoped particles, two relaxation time scales are identified for ambient fields above 0.2 mT. The slower, T1,s, is roughly independent of ambient field; the faster, T1,f, decreases with increasing ambient field. A model in which nuclear spin relaxation occurs at the particle surface via a two-electron mechanism is shown to be in good agreement with the experimental data, particularly the field independence of T1,s. For boron-doped particles, a single relaxation time scale is observed. This …


Excitation-Induced Ge Quantum Dot Growth On Si(100)-2x1 By Pulsed Laser Deposition, Ali Oguz Er Jul 2011

Excitation-Induced Ge Quantum Dot Growth On Si(100)-2x1 By Pulsed Laser Deposition, Ali Oguz Er

Physics Theses & Dissertations

Self-assembled Ge quantum dots (QD) are grown on Si(100)-(2×1) with laser excitation during growth processes by pulsed laser deposition (PLD). In situ reflection-high energy electron diffraction (RHEED) and post-deposition atomic force microscopy (AFM) are used to study the growth dynamics and morphology of the QDs. A Q-switched Nd:YAG laser (λ = 1064 nm, 40 ns pulse width, 5 J/cm2 fluence, and 10 Hz repetition rate) were used to ablate germanium and irradiate the silicon substrate. Ge QD formation on Si(100)-(2×1) with different substrate temperatures and excitation laser energy densities was studied. The excitation laser reduces the epitaxial growth temperature …


Structure And Strength: Anisotropic Polyvinyl Alcohol Hydrogels And Spider Mite Silk Fibres, Stephen Hudson Jun 2011

Structure And Strength: Anisotropic Polyvinyl Alcohol Hydrogels And Spider Mite Silk Fibres, Stephen Hudson

Electronic Thesis and Dissertation Repository

Polyvinyl alcohol (PVA) is a hydrophilic, biocompatible polymer which can be made into physically cross-linked hydrogels by freezing and thawing PVA solution. These hydrogels can be made with anisotropic mechanical properties closely matching those of porcine aorta, making them a promising material for producing artificial heart valves and heart valve stents.

Small- and ultra small-angle neutron scattering has been used to study the structure of isotropic and anisotropic PVA hydrogels at length-scales of 2 nm to 10 μm. By supplementing the neutron data with data from atomic force microscopy, a large range of length-scales have been probed, within which structural …


The Effects Of Humidity On The Dielectric Response In Ferroelectric Polymer Films Made By Langmuir-Blodgett Deposition, Kristin Kraemer, Alexander Sorokin, Christina Othon, Stephen Ducharme, Vladimir Fridkin Jun 2011

The Effects Of Humidity On The Dielectric Response In Ferroelectric Polymer Films Made By Langmuir-Blodgett Deposition, Kristin Kraemer, Alexander Sorokin, Christina Othon, Stephen Ducharme, Vladimir Fridkin

Christina M Othon

No abstract provided.


Electron Irradiation Effects On Ferroelectric Copolymer Langmuir-Blodgett Films, Christina M. Othon, Stephen Ducharme Jun 2011

Electron Irradiation Effects On Ferroelectric Copolymer Langmuir-Blodgett Films, Christina M. Othon, Stephen Ducharme

Christina M Othon

The effect of irradiation on the ferroelectric properties of Langmuir-Blodgett films of the copolymer poly(vinylidene fluoride-trifluorethelene) is investigating using 1.26 MeV electrons with dosages from 16 to 110 Mrad. Irradiation causes a systematic decrease in the phase transition temperature, coercive field and polarization of these thin films.


Measurement Of Spin Diffusion In Semi-Insulating Gaas, Christopher P. Weber, Craig A. Benko, Stanley C. Hiew May 2011

Measurement Of Spin Diffusion In Semi-Insulating Gaas, Christopher P. Weber, Craig A. Benko, Stanley C. Hiew

Physics

We use optical transient-grating spectroscopy to measure the spin diffusion of optically oriented electrons in bulk, semi-insulating GaAs(100). Trapping and recombination do not quickly deplete the photoexcited population. The spin diffusion coefficient of 88±12 cm2/s is roughly constant at temperatures from 15 K to 150 K, and the spin diffusion length is at least 450 nm. We show that it is possible to use spin diffusion to estimate the electron diffusion coefficient. Due to electron-electron interactions, the electron diffusion is 1.4 times larger than the spin diffusion.


The Interplay Between Symmetry And Static Dipoles With Adsorption On Molecular Substrates, Zhengzheng Zhang May 2011

The Interplay Between Symmetry And Static Dipoles With Adsorption On Molecular Substrates, Zhengzheng Zhang

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

This thesis presents evidence of preferential adsorption and the associated dipole-dipole interactions that can occur at molecule to molecule interfaces. The results are discussed in the context of the possibility of interactions caused by strong intrinsic dipoles when adsorbed on electrostatically biased substrates. Key is the discovery of lock and key adsorption chemistry by comparing the reversible absorption of the three isomers of di-iodobenzene (1,2-di-iodobenzene, 1,3-di-iodobenzene, and 1,4-di-iodobenzene) on molecular films of a quinonoid zwitterion. There is unequivocal evidence that the molecular adsorption and absorption of 1, 3-diiodobenzene is strongly favored at 150 K over the other isomers of di-iodobenzene. …