Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2023

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 48

Full-Text Articles in Condensed Matter Physics

Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson Dec 2023

Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson

Physics & Astronomy ETDs

Our first focus is on few-hole quantum dots in germanium. We use discontinous Galerkin methods to discretize and solve the equations of a highly detailed k·p model that describes these systems, enabling a better understanding of experimental magnetospectroscopy results. We confirm the expected anisotropy of single-hole g-factors and describe mechanisms by which different orbital states have different g-factors. Building on this, we show that the g-factors in Ge holes are suciently sensitive to details of the device electrostatics that magnetospectroscopy data can be used to make a prediction of the underlying confinement potential. The second focus is on designing quantum …


Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella Dec 2023

Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella

Doctoral Dissertations

Glasses are ubiquitous in daily life and have unique properties which are a consequence of the underlying disordered structure. By understanding the fundamental processes that govern these properties, we can modify glasses for desired applications. Key to understanding the structure-dynamics relationship in glasses is the variety of relaxation processes that exist below the glass transition temperature. Though these relaxations are well characterized with macroscopic experimental techniques, the microscopic nature of these relaxations is difficult to elucidate with experimental tools due to the requirements of timescale and spatial resolution. There remain many questions regarding the microscopic nature of relaxation in glass …


Experiments With Monopoles, Rings And Knots In Spinor Bose-Einstein Condensates, Alina A. Blinova Nov 2023

Experiments With Monopoles, Rings And Knots In Spinor Bose-Einstein Condensates, Alina A. Blinova

Doctoral Dissertations

Topological excitations are ubiquitous in nature, their charge being a naturally-quantized, conserved quantity that can exhibit particle-like behavior. Spinor Bose-Einstein condensates (BECs) are an exceptionally versatile system for the study and exploration of topological excitations. Between the spin-1 and spin-2 87Rb condensates there are seven possible broken-symmetry magnetic phases, with each one hosting unique opportunities for topological defects. We have created and observed several novel topological excitations in a spinor 87Rb BEC. In this dissertation I present and discuss three principal experimental findings: (1) The discovery of an Alice ring, or a half-quantum vortex ring, emerging from a …


Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge Sep 2023

Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge

Dissertations, Theses, and Capstone Projects

Individual quantum systems in semiconductors are currently the most sought-after platform for applications in quantum science. Most notably, the nitrogen-vacancy (NV) center in diamond features a defect deep within the electronic bandgap, making it amenable for precise manipulation to help pave the way to perform fundamental quantum physics experimentation. The NV center also offers long coherence times and versatile spin-dependent fluorescent properties, making it an ideal candidate for a nanoscale magnetometer. Furthermore, multi-color excitation offers deterministic charge state manipulation. While ambient operation has been key to their appeal, bringing NVs to cryogenic conditions opens new opportunities for alternate forms of …


Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh Sep 2023

Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh

Dissertations, Theses, and Capstone Projects

Strong light-matter coupling in solid state systems is an intriguing process that allows one to exploit the advantages of both light and matter. In this context, microcavities have become essential platforms for studying the strong coupling regime, where hybrid light-matter states known as exciton-polaritons form, leading to enhanced light matter interaction, modified material properties, and novel quantum phenomena. In this thesis, we explore the phenomenology of exciton-polaritons in strained TMD microcavities, 2D perovskites, fluorescent proteins and organic dyes encompassing thermalization, polariton lasing, and the observation of nonlinear effects.

Transition metal dichalcogenides (TMDs) have emerged as a remarkable class of two- …


The Role Of Nuclear Quantum Effects In Supercooled Water And Amorphous Ice, Ali H. Eltareb Sep 2023

The Role Of Nuclear Quantum Effects In Supercooled Water And Amorphous Ice, Ali H. Eltareb

Dissertations, Theses, and Capstone Projects

Water is one of the most important substances on Earth and plays a fundamental role in numerous scientific and engineering applications. Interestingly, water behaves much differently than other liquids. For example, water shows an anomalous density maximum at 277 K, the solid phase (ice) is less denser than the liquid, and its thermodynamic response functions, such as the specific heat CP and isothermal compressibility κT, also increase anomalously upon cooling. In the glassy state, water can exist in two different forms, low-density and high-density amorphous ice (LDA and HDA). While water has been scrutinized for many centuries, …


Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park Aug 2023

Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park

Doctoral Dissertations

Multiferroic materials attract significant attention due to their potential utility in a broad range of device applications. The inclusion of heavy metal centers in these materials enhances their magnetoelectric properties, yielding fascinating physical phenomena such as the Dzyaloshinskii–Moriya interaction, nonreciprocal directional dichroism, enhancement of spin-phonon coupling, and spin-orbit-entangled ground states. This dissertation provides a comprehensive survey of magnetoelectric multiferroics containing heavy metal centers and explores spectroscopic techniques under extreme conditions. A microscopic examination of phase transitions, symmetry-breaking, and structure-property relationships enhances the fundamental understanding of coupling mechanisms.

In A2Mo3O8 (A = Fe, Zn, Ni, and Mn), we use optical spectroscopy …


Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan Aug 2023

Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan

All Dissertations

In this thesis, we discuss the existence of spin and charge currents in systems with broken spin inversion symmetry proportional to the magnitude square of the driving electric and thermal fields. This outcome is predicated on symmetry considerations in the momentum space, whereby the product between the current operator and the out-of-equilibrium distribution function has to be even.

First, we derive the second-order correction to the particle distribution function $\delta f^{(2)}$ in a semi-classical approximation, considering the local change in the equilibrium distribution function caused by external fields. Our approach departs significantly from the previous theory where $\delta f^{(2)}$ is …


Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert Aug 2023

Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

This dissertation explores the development and application of diamond color centers, specifically the silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers, in super-resolution microscopy and magnetic imaging techniques. It demonstrates the potential of SiV centers as photostable fluorophores in stimulated emission depletion (STED) microscopy, with a resolution of approximately 90 nm. The research also presents a method for nanoscale magnetic microscopy using NV centers by combining charge state depletion (CSD) microscopy with optically detected magnetic resonance (ODMR) to image magnetic fields produced by 30 nm iron-oxide nanoparticles. The individual magnetic feature width reaches ~100 nm while resolving magnetic field patterns from nanoparticles …


Two-Dimensional Crystal Phases Of Graphene Monoxide & Interaction Of Lithium With Graphene Monoxide, Danylo Radevych Aug 2023

Two-Dimensional Crystal Phases Of Graphene Monoxide & Interaction Of Lithium With Graphene Monoxide, Danylo Radevych

Theses and Dissertations

This work explores the possible existence, properties, and potential applications of different polytypes of graphene monoxide (GmO) - two-dimensional crystalline monolayers composed of equal numbers of O and C atoms. In addition to previously experimentally discovered and theoretically modeled α phase, prediction and discovery of the second phase - β-GmO - is reported along with evaluation of six other possible phases. Structural parameters, electronic and mechanical properties of all the phases, including α-GmO, are determined using density functional calculations and compared. It is suggested that multiple phases of GmO can co-exist in the same composite, and developing a synthesis process …


Construction Of Zinc Oxide And Magnesium Oxide Heterostructures By Atomic Layer Deposition, Netra Sharma Aug 2023

Construction Of Zinc Oxide And Magnesium Oxide Heterostructures By Atomic Layer Deposition, Netra Sharma

Theses and Dissertations

Zinc oxide (ZnO) has gained wide technological interest due to its direct bandgap of ~3.37 eV and high exciton binding energy of ~60 meV and has exhibited promise for numerous electronics and opto-electronics applications. ZnO can also be alloyed with materials like magnesium oxide (MgO) to tailor the bandgap. Such heterostructures (Zn, Mg)O can be used in optoelectronic devices like quantum well lasers, photodetectors, etc.In this work, we studied the physical properties of zinc oxide (ZnO), magnesium oxide (MgO) and the heterostructures of zinc and magnesium oxide (Zn,Mg)O grown by atomic layer deposition (ALD) using a homemade viscous flow type …


Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy Aug 2023

Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy

Theses and Dissertations

ABSTRACT

SYNTHESIS, CHARACTERIZATION, AND SIMULATION OF TWO-DIMENSIONAL MATERIALS

by

Lawrence Hudy

The University of Wisconsin-Milwaukee, 2023Under the Supervision of Professor Michael Weinert

This dissertation focuses on my journey through many aspects of surface science leading to the first principles investigation of transition metal dichalcogenides studying the impact of defects, twist, and decreasing interlayer separation to probe their effect on the electronic properties of these materials. My journey started out learning many aspects of material science such as methods for material synthesis and characterization but later ended on simulation of material properties using density functional theory. In the first experiments, we …


Exploring Skyrmions Dynamics And Structure Using Neutron Scattering, W-L-Namila Chandula Liyanage Aug 2023

Exploring Skyrmions Dynamics And Structure Using Neutron Scattering, W-L-Namila Chandula Liyanage

Doctoral Dissertations

Magnetic skyrmions are topologically protected chiral spin textures with great potential for next-generation consumer technologies. These magnetic structures can be described as spins continuously wrapping into a closed coplanar loop, featuring a core and fencing perimeter with opposite out-of-plane orientations. While conventional depictions of magnetic skyrmions use a two-dimensional projection, recent research underscores the importance of their three-dimensional structure in determining their topology and stability. Magnetic skyrmions typically emerge just below the curie temperature of a magnetic material, creating what is known as a skyrmion pocket. In most materials the stability pocket is at low temperatures and finite fields, however …


Intercalation And High-Pressure Investigations Of Black Arsenic Phosphorus: Unraveling Material Transformations., Dinushika Vithanage Aug 2023

Intercalation And High-Pressure Investigations Of Black Arsenic Phosphorus: Unraveling Material Transformations., Dinushika Vithanage

Electronic Theses and Dissertations

Black arsenic phosphorus (b-AsyP1-y) alloys have emerged as intriguing materials within the realm of two-dimensional (2D) materials, following the discovery of black phosphorus (BP). These alloys possess capability to overcome major limitations of BP and exhibit potential for tunability and enhancement of properties making them promising materials for a wide range of applications, including lithium-ion batteries. Inspired by the intriguing findings obtained for BP, this research focuses on understanding the structural modifications that can be achieved in b-AsyP1-y alloys through the application of intercalation and high pressure. The initial phase of our investigation …


Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos Jun 2023

Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos

Electronic Theses and Dissertations

Modern fabrication and growth techniques allow for the development of increasingly smaller and more complex solid state structures, the characterization of which require highly specialized measurement platforms. In this dissertation I present the development of techniques and instrumentation used in magnetic, thermal, and electrical property measurements of thin films and nanostructures. The understanding of trapped-flux induced artifacts in SQUID magnetometry of large paramagnetic substrates allows for the resolution of increasingly small moments. Using these methods, the antiferromagnetic coupling of the interface between a Y3Fe5O12 film and Gd3Ga5O12substrate is quantitatively …


The Study Of Excitons In 2d Novel Materials And Their Van Der Waals Heterostructures In The Magnetic Field, Anastasia Spiridonova Jun 2023

The Study Of Excitons In 2d Novel Materials And Their Van Der Waals Heterostructures In The Magnetic Field, Anastasia Spiridonova

Dissertations, Theses, and Capstone Projects

This research focuses on the direct and indirect excitons in Rydberg states in monolayers, bilayers, and van der Waals heterostructures composed of 2D semiconductors in the presence of the external magnetic field. In our work, we report binding energies of direct and indirect excitons in Rydberg states, the energy contribution from the magnetic field to the binding energies of magnetoexcitons, and diamagnetic coefficients (DMCs) of magnetoexcitons.

We study isotropic materials: transition metal dichalcogenides, TMDCs (WSe2, WS2, MoSe2, MoS2), and Xenes (silicene, germanene, stanene), and anisotropic materials: phosphorene and transition metal trichalcogenides, TMTCs …


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn May 2023

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …


Oxidation Resistance Of An Atomically Flat Cu(111) Surface: A First-Principles Study, Bipin Lamichhane May 2023

Oxidation Resistance Of An Atomically Flat Cu(111) Surface: A First-Principles Study, Bipin Lamichhane

Theses and Dissertations

The first-principles calculation based on density functional theory (DFT) was used to study the oxidation resistance of atomically flat and atomic-step edges of Cu(111), diffusion of Cu atoms in different surfaces of alumina and interface properties of alumina and Cu(111), and magnetic properties of Mn-substituted strontium hexaferrite. The dissociation of oxygen molecules is the primary reason for the corrosion of metals, which deteriorates their application. Cu(111) flat surface, mono-atomic, and multi-atomic step edges were used to study oxygen diffusion. Penetration of oxygen on a Cu(111) flat surface requires high energy, indicating oxidation resistance. Our DFT result of oxygen diffusion into …


Origin And Structure Of The First Sharp Diffraction Peak Of Amorphous Solids, Devilal Dahal May 2023

Origin And Structure Of The First Sharp Diffraction Peak Of Amorphous Solids, Devilal Dahal

Dissertations

Several explanations have been reported in the literature about the origin of extended-range oscillations (EROs) in the atomic pair-correlation function of amorphous materials. Although the radial ordering beyond the short-range order of about 5 Å has been extensively studied in amorphous materials, the exact nature of the radial ordering beyond a nanometer is still not resolved. This dissertation address this problem and explains the nature of the EROs by using high-quality models of amorphous silicon (a-Si) obtained from Monte Carlo and Molecular Dynamics simulations. The extended-range ordering in a-Si is examined through radial oscillations on the length …


Influence Of Platinum Nanoparticles On Ionic Transport And Hydrogen Reactivity Of Yttria-Stabilized Zirconia Thin Films, Firas Mahyob May 2023

Influence Of Platinum Nanoparticles On Ionic Transport And Hydrogen Reactivity Of Yttria-Stabilized Zirconia Thin Films, Firas Mahyob

Electronic Theses and Dissertations

Yttria-stabilized zirconia (YSZ) is a widely used ceramic material in solid oxide fuel cells, oxygen sensors, and sensing applications due to its high ionic conductivity, chemical inertness, and thermal stability. YSZ is promising active coating for use in miniaturized harsh environment wireless surface acoustic sensors to monitor gases such as H2. Adding catalytic Pt nanoparticles can enhance gas reactivity and lead to associated film conductivity changes.

In this work, thin films with an (8% Y2O3 - 92% ZrO2) composition were deposited onto piezoelectric langasite substrates using RF magnetron sputtering in Ar:O2 - …


Computational Modeling Of Superconductivity From The Set Of Time-Dependent Ginzburg-Landau Equations For Advancements In Theory And Applications, Iris Mowgood May 2023

Computational Modeling Of Superconductivity From The Set Of Time-Dependent Ginzburg-Landau Equations For Advancements In Theory And Applications, Iris Mowgood

Computational and Data Sciences (PhD) Dissertations

A full review of the research conducted and published during my PhD studies in Computational and Data Sciences at Chapman University, under the advisement of Dr. Armen Gulian, are presented. Using the set of time-dependent Ginzburg-Landau (TDGL) equations with inclusion of the interference current and the non-equilibrium phonon term, we modeled the dynamics of superconductors in various theory revealing states and practical purposes. A review of the history and phenomenon of superconductivity, including modern applications, is introduced. The Josephson effect and associated Josephson junction are discussed for comparison to our analogous results with the 1-D superconducting wire. The mathematics of …


Methods For Preparing And Characterizing Granular Materials For Electron Yield Measurements, Tom Keaton May 2023

Methods For Preparing And Characterizing Granular Materials For Electron Yield Measurements, Tom Keaton

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

This work presents a systematic study on sample preparation methods and accuracy of electron yield (EY) measurements of highly insulating, granular materials. EY measurements of highly insulating materials, especially those with high EY, are challenging due to the effects of sample charging even for very low fluence electron probe beams. EY measurements of particulates are complicated by: (i) roughness effects from particulate size, shape, coverage, and compactness; (ii) particle adhesion; (iii) substrate contributions; and (iv) electrostatic repulsion and potential barriers from charged particles and substrates. Numerous methods were explored to rigidly affix particles on conducting substrates at varying coverages for …


Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers May 2023

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Exploring Ferroelectric Phenomena In Batio3, Linbo3, And Liznsb: From Extended Oxygen Vacancies To Tri-Stable Polarization And Giant Hyperferroelectricity, Shaohui Qiu May 2023

Exploring Ferroelectric Phenomena In Batio3, Linbo3, And Liznsb: From Extended Oxygen Vacancies To Tri-Stable Polarization And Giant Hyperferroelectricity, Shaohui Qiu

Graduate Theses and Dissertations

This dissertation presents three projects that investigate the complex phenomena of ferroelectricity under different conditions in BaTiO3, LiNbO3, and LiZnSb using first-principles density functional calculations. Extended defects in ferroelectric solids play a crucial role in reducing the lifetime and performance of ferroelectric devices by causing fatigue, domain pinning, and aging. Thus, understanding their impact is of critical importance for the development of reliable and high-performance ferroelectric devices. In addition, hyperferroelectricity is an intriguing phenomenon that has attracted much attention in recent years. Despite the existence of depolarization field, spontaneous polarization persists under an open-circuit boundary condition (OCBC), making hyperferroelectric materials …


Understanding And Tuning Magnetism In Van Der Waals Magnetic Compounds, Rabindra Basnet May 2023

Understanding And Tuning Magnetism In Van Der Waals Magnetic Compounds, Rabindra Basnet

Graduate Theses and Dissertations

The recently discovered two-dimensional (2D) magnetism has attracted intensive attention due to possible magnetic phenomenon arising from 2D magnetism and their promising potential for spintronics applications. The advances in 2D magnetism have motivated the study of layered magnetic materials, and further enhanced our ability to tune their magnetic properties. Among various layered magnets, tunable magnetism has been widely investigated in metal thiophosphates MPX3. It is a class of magnetic van der Waals (vdW) materials with antiferromagnetic ordering persisting down to atomically thin limit. Their magnetism originates from the localized moments due to 3d electrons in transition metal ions. So, their …


Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back May 2023

Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back

All Theses

The effects of ion irradiation on the physical properties of materials make EBITs an invaluable tool for many scientific and engineering fields. Many experiments rely on the use of these lab setups to test for device reliability, explore surface physics phenomena, and replicate the environment for many physical systems that are not readily accessible. We seek to extend the capabilities of these experiments using the CUEBIT and a new sample holder installed in section 3.

This thesis begins by presenting an overview of the CUEBIT and the basic operations of the equipment. This is followed by a brief explanation of …


Designing Noncentrosymmetric Multifunctional Materials, Ebube Oyeka May 2023

Designing Noncentrosymmetric Multifunctional Materials, Ebube Oyeka

All Dissertations

Noncentrosymmetric (NCS) materials with crystal lattices lacking spatial inversion symmetry display a wide range of exciting functionalities. This dissertation covers two classes of functional NCS materials: magnetic skyrmion-host compounds and multifunctional materials. Magnetic skyrmion and multifunctional materials combining optical and magnetic responses are providing avenues for developing and optimizing the performance of electronic devices that can have uses in memory storage, laser technology, medicine, sensors, etc. The formation of skyrmions is driven by asymmetric Dzyaloshinskii–Moriya (DM) interaction facilitated by broken spatial inversion symmetry and large spin-orbit coupling (SOC), while multiple functionalities arise when spin carriers and optical chromophores are optimally …


Response Of The Isothermal Mode Grüneisen Tensor Across Phase Boundaries, Jasmine K. Hinton May 2023

Response Of The Isothermal Mode Grüneisen Tensor Across Phase Boundaries, Jasmine K. Hinton

UNLV Theses, Dissertations, Professional Papers, and Capstones

The assumptions for the 1912 Grüneisen parameter are reviewed, particularly in the cases of anisotropy, high temperatures, and across phase boundaries. Two main case studies are shown: β-Sn, and Cd. The main techniques of this work involve resistively heated diamond anvil cells with both optical Raman spectroscopy and x-ray diffraction. It is found in Sn that the isothermal mode Grüneisen tensor along increasing isotherms diverges from the single-valued temperature aggregate at the onset of melt, and this is proposed to use as a method of exploring melt phase boundaries in other systems. This method is examined once again on another …


Stoichiometric Determination Of Hydride Materials At Extreme Conditions, Gregory Alexander Smith May 2023

Stoichiometric Determination Of Hydride Materials At Extreme Conditions, Gregory Alexander Smith

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hydrogen was predicted to be a high-temperature superconductor at near-megabar conditions in 1968,[1] but only recently was been experimentally observed.[2] This is due to the extraneous metrological constraint of requiring 5 megabars of pressure to stabilize. A more practical approach for synthesis of high-temperature superconductors has been pro-posed through the use of hydride compounds. Recently, a surge of rare earth hydrides have achieved critical superconducting transition temperatures (T_C ) close to room temperature.[3, 4, 5, 6] However, due to limitations of the necessary instrumentation to achieve megabar pressures, many techniques traditionally used to measure stoichiometry are unavailable.Three works presented in …


Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage May 2023

Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage

Electronic Theses and Dissertations

Lithium-Sulfur (Li-S) batteries have become a promising candidate to meet the current energy storage demand, with its natural abundance of materials, high theoretical capacity of 1672 mAhg-1, high energy density of 2600 Whkg-1, low cost and lower environmental impact. Sulfide based solid state electrolytes (SSEs) have received greater attention due to their higher ionic conductivity, compatible interface with sulfur-based cathodes, and lower grain boundary resistance. However, the interface between SSEs and cathodes has become a challenge in all solid-state Li-S batteries due to the rigidity of the participating surfaces. A hybrid electrolyte containing SSE coupled with a small amount of …