Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 29 of 29

Full-Text Articles in Condensed Matter Physics

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg May 2024

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale Mar 2024

Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale

Electronic Theses and Dissertations

Continuing technological advancements bring forth escalating challenges in global energy consumption and subsequent power dissipation, posing significant economic and environmental concerns. In response to these difficulties, the fields of thermoelectrics, spintronics, and spincaloritronics emerge as contemporary solutions, each presenting unique advantages. Thermoelectric devices, based on the Seebeck effect, other a passive, carbon-free energy generating solution from waste heat. Although current thermoelectric technology encounters hurdles in achieving optimal efficiencies without intricate designs or complex materials engineering, recently research into low-damping metallic ferromagnetic thin films have provided a new method to enhance spin wave lifetimes, thus contributing to thermoelectric voltage improvements. As …


Photoluminescence Of Beryllium-Related Defects In Gallium Nitride, Mykhailo Vorobiov, Mykhailo Vorobiov Jan 2024

Photoluminescence Of Beryllium-Related Defects In Gallium Nitride, Mykhailo Vorobiov, Mykhailo Vorobiov

Theses and Dissertations

This study explores the potential of beryllium (Be) as an alternative dopant to magnesium (Mg) for achieving higher hole concentrations in gallium nitride (GaN). Despite Mg prominence as an acceptor in optoelectronic and high-power devices, its deep acceptor level at 0.22 eV above the valence band limits its effectiveness. By examining Be, this research aims to pave the way to overcoming these limitations and extend the findings to aluminum nitride and aluminum gallium nitride (AlGaN) alloy. Key contributions of this work include. i)Identification of three Be-related luminescence bands in GaN through photoluminescence spectroscopy, improving the understanding needed for further material …


Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos Jun 2023

Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos

Electronic Theses and Dissertations

Modern fabrication and growth techniques allow for the development of increasingly smaller and more complex solid state structures, the characterization of which require highly specialized measurement platforms. In this dissertation I present the development of techniques and instrumentation used in magnetic, thermal, and electrical property measurements of thin films and nanostructures. The understanding of trapped-flux induced artifacts in SQUID magnetometry of large paramagnetic substrates allows for the resolution of increasingly small moments. Using these methods, the antiferromagnetic coupling of the interface between a Y3Fe5O12 film and Gd3Ga5O12substrate is quantitatively …


Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers May 2023

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Two-Dimensional Black Phosphorus For Terahertz Emission And Near-Field Radiative Heat Transfer, Mahmudul Hasan Doha Dec 2021

Two-Dimensional Black Phosphorus For Terahertz Emission And Near-Field Radiative Heat Transfer, Mahmudul Hasan Doha

Graduate Theses and Dissertations

The main focus of this work is to investigate two potential optical and optoelectronic applications of black phosphorus (BP): the near-field radiative heat transfer in plasmonic heterostructures with graphene and terahertz emission from multi-layer BP photoconductive antennas. When the separation distance between graphene-black phosphorene is much smaller than or comparable to the thermal wavelength at different temperatures, a near-field radiation heat transfer breaks the Planck blackbody limit. The magnitude of the near-field radiation enhancement acutely depends on the gate voltage, doping, and vacuum gap of the graphene and BP pair. The strong near-field radiation heat transfer enhancement of the specific …


Nanoengineered Materials For Energy Conversion & Storage Applications: A Density Functional Theory Study, Ahmed Biby Jan 2021

Nanoengineered Materials For Energy Conversion & Storage Applications: A Density Functional Theory Study, Ahmed Biby

Theses and Dissertations

The conventional approach for the development of novel materials has become long relative to the desired product development cycle. Thus, the sluggish pace of the development of materials within the conventional approach hinders the rapid transformation of the scientific outcomes into useful technological products. To this end, the field of hierarchical materials informatics evolved to bridge this gap. In this field, the multiscale material internal structure is considered the starting point and the core of this approach. This being said, the density functional theory (DFT) was used to generate useful materials data for the advancement of the hierarchical materials data-bases …


Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami Apr 2020

Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami

Optical Science and Engineering ETDs

This dissertation reports recent advances in mid-infrared (mid-IR) optical refrigeration and Radiation Balanced Lasers (RBLs). The first demonstration of optical refrigeration in Ho:YLF and Tm:YLF crystals as promising mid-IR laser cooling candidates is reported. Room temperature laser cooling efficiency of Tm- and Ho-doped crystals at different excitation polarization is measured and their external quantum efficiency and background absorption are extracted. Complete characterization of laser cooling samples is obtained via performing detailed low-temperature spectroscopic analysis, and their minimum achievable temperature as well as conditions to achieve laser cooling efficiency enhancement in mid-IR are investigated. By developing a Thulium-doped fiber amplifier, seeded …


Ii-Vi Type-Ii Quantum Dot Superlattices For Novel Applications, Vasilios Deligiannakis Feb 2020

Ii-Vi Type-Ii Quantum Dot Superlattices For Novel Applications, Vasilios Deligiannakis

Dissertations, Theses, and Capstone Projects

In this thesis, we discuss the growth procedure and the characterization results obtained for epitaxially grown submonolayer type-II quantum dot superlattices made of II-VI semiconductors. We have investigated the spin dynamics of ZnSe layers with embedded type-II ZnTe quantum dots and the use of (Zn)CdTe/ZnCdSe QDs for intermediate band solar cell (IBSC). Samples with a higher quantum dot density exhibit longer electron spin lifetimes, up to ~1 ns at low temperatures. Tellurium isoelectronic centers, which form in the ZnSe spacer regions as a result of the growth conditions, were also probed. A new growth sequence for type-II (Zn)CdTe/ZnCdSe (QDs) was …


Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka Jan 2020

Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka

Dissertations, Master's Theses and Master's Reports

First-principles calculations are performed on γ-FeSi2 nanostructures grown on Si (111) and (001) substrate. An attempt to explain the origin of emergent magnetic properties of the metastable gamma phase of iron di-silicide (γ-FeSi2) is made, which show ferromagnetic behavior on nanoscale, unlike its possible bulk form. Many papers try to explain this magnetism from factors like bulk, epitaxial strain, interface, surface, edges, and corners but doesn’t provide an analytical study for these explanations. Density functional theory is used to analyze the magnetic effects of these factors. The results for the epitaxial structures show no magnetic behavior for …


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves Jan 2020

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the …


Studies Of Initial Growth Of Gan On Inn, Alaa Alnami Dec 2019

Studies Of Initial Growth Of Gan On Inn, Alaa Alnami

Graduate Theses and Dissertations

III-nitride materials have recently attracted much attention for applications in both the microelectronics and optoelectronics. For optoelectronic devices, III-nitride materials with tunable energy band gaps can be used as the active region of devices to enhance the absorption or emission. A such material is indium nitride (InN), which along with gallium nitride (GaN) and aluminum nitride (AlN) embody the very real promise of forming the basis of a broad spectrum, a high efficiency solar cell. One of the remaining complications in incorporating InN into a solar cell design is the effects of the high temperature growth of the GaN crystal …


Quantitative Probing Of Vacancies And Ions Dynamics In Electroactive Oxide Materials, Jiaxin Zhu Mar 2019

Quantitative Probing Of Vacancies And Ions Dynamics In Electroactive Oxide Materials, Jiaxin Zhu

Doctoral Dissertations

Oxygen vacancy and ion dynamics in functional oxides are critical factors influencing electrical conductivity and electrochemical activity of oxides assemblies. The recent advancements in deposition and fabrication of oxide heterostructured films with atomic-level precision has led to discovery of intriguing physical properties and new artificial materials. While still under debate, researchers most often attribute these observed behaviors to unique oxygen vacancy distributions in the substrate near heterointerfaces. In electroactive oxides devices such as solid oxide cells (SOCs), oxygen vacancy and ion transport at the triple-phase boundary determines the performance of the device. This complex process motivates numerous remaining questions regarding …


Probing Quantized Excitations And Many-Body Correlations In Transition Metal Dichalcogenides With Optical Spectroscopy, Shao-Yu Chen Mar 2019

Probing Quantized Excitations And Many-Body Correlations In Transition Metal Dichalcogenides With Optical Spectroscopy, Shao-Yu Chen

Doctoral Dissertations

Layered transition metal dichalcogenides (TMDCs) have attracted great interests in recent years due to their physical properties manifested in different polytypes: Hexagonal(H)-TMDC,which is semiconducting, exhibits strong Coulomb interaction and intriguing valleytronic properties; distorted octahedral(T’)-TMDC,which is semi-metallic, is predicted to exhibit rich nontrivial topological physics. In this dissertation,we employ the polarization-resolved micron-Raman/PL spectroscopy to investigate the optical properties of the atomic layer of several polytypes of TMDC. In the first part for polarization-resolved Raman spectroscopy, we study the lattice vibration of both H and T’-TMDC, providing a thorough understanding of the polymorphism of TMDCs. We demonstrate that Raman spectroscopy is a …


Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran Jan 2019

Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran

Electronic Theses and Dissertations

We theoretically and experimentally investigate the transfer of orbital angular momentum from light to an ensemble of semiconductor-based nanostructures composed of lead sulfide quantum dots. Using an ensemble of quantum dots offers a higher cross-section and more absorption of twisted light fields compared to experimentally challenging single-nanostructure measurements. However, each quantum dot (except for on-center) sees a displaced light beam parallel to its own axis of symmetry. The transition matrix elements for the light-matter interaction are calculated by expressing the displaced light beam in terms of the appropriate light field centered on the nanoparticles. The resulting transition rate induced by …


Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary Jan 2019

Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary

Theses and Dissertations--Physics and Astronomy

In the past two decades, there has been a quest to understand and utilize novel materials such as iridates and two-dimensional (2D) materials. These classes of materials show a lot of interesting properties both in theoretical predictions as well as experimental results. Physical properties of some of these materials have been investigated using scanning probe measurements, along with other techniques.

One-dimensional (1D) catalytic etching was investigated in few-layer hexagonal boron nitride (hBN) films. Etching of hBN was shown to share several similarities with that of graphitic films. As in graphitic films, etch tracks in hBN commenced at film edges and …


Structural, Transport, And Topological Properties Induced At Complex-Oxide Hetero-Interfaces, Justin K. Thompson Jan 2018

Structural, Transport, And Topological Properties Induced At Complex-Oxide Hetero-Interfaces, Justin K. Thompson

Theses and Dissertations--Physics and Astronomy

Complex-oxides have seen an enormous amount of attention in the realm of Condensed Matter Physics and Materials Science/Engineering over the last several decades. Their ability to host a wide variety of novel physical properties has even caused them to be exploited commercially as dielectric, metallic and magnetic materials. Indeed, since the discovery of high temperature superconductivity in the “Cuprates” in the late 1980’s there has been an explosion of activity involving complex-oxides. Further, as the experimental techniques and equipment for fabricating thin films and heterostructures of these materials has improved over the last several decades, the search for new and …


Photoluminescence From Gan Co-Doped With C And Si, Mykhailo Vorobiov Jan 2018

Photoluminescence From Gan Co-Doped With C And Si, Mykhailo Vorobiov

Theses and Dissertations

This thesis devoted to the experimental studies of yellow and blue luminescence (YL and BL relatively) bands in Gallium Nitride samples doped with C and Si. The band BLC was at first observed in the steady-state photoluminescence spectrum under high excitation intensities and discerned from BL1 and BL2 bands appearing in the same region of the spectrum. Using the time-resolved photoluminescence spectrum, we were able to determine the shape of the BLC and its position at 2.87 eV. Internal quantum efficiency of the YL band was estimated to be 90\%. The hole capture coefficient of the BLC …


Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin Dec 2017

Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin

Electronic Theses and Dissertations

Gas analysis is an important part of our world and gas sensing technology is becoming more essential for various aspects of our life. A novel approach for gas mixture analysis by using portable gas chromatography in combination with an array of highly integrated and selective metal oxide (MOX) sensors has been studied. We developed a system with small size (7 x 13 x 16 inches), low power consumption (~10 W) and absence of special carrier gases designed for portable field analysis (assuming apriori calibration). Low ppb and even sub-ppb level of detection for some VOCs was achieved during the analysis …


Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang Nov 2016

Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang

Doctoral Dissertations

Polymer-based semiconducting materials are promising candidates for large-scale, low-cost photovoltaic devices. To date, the efficiency of these devices has been low in part because of the challenge of optimizing molecular packing while also obtaining a bicontinuous structure with a characteristic length comparable to the exciton diffusion length of 10 to 20 nm. In this dissertation we developed an innovative evaporation-induced nanoparticle self-assembly technique, which could be an effective approach to fabricate uniform, densely packed, smooth thin films with cm-scale area from home-made P3HT nanoparticles. Unlike the previous reports of nanoparticle-based film formation, we use a mixture of two solvents so …


Synthesis, Characterization, And Electronic Properties Of Novel 2d Materials : Transition Metal Dichalcogenides And Phosphorene., George Anderson May 2016

Synthesis, Characterization, And Electronic Properties Of Novel 2d Materials : Transition Metal Dichalcogenides And Phosphorene., George Anderson

Electronic Theses and Dissertations

Scaling electronic devices has become paramount. The current work builds upon scaling efforts by developing novel synthesis methods and next generation sensing devices based on 2D materials. A new combination method utilizing thermal evaporation and chemical vapor deposition was developed and analyzed to show the possibilities of Transition Metal Dichalcogenide monolayers and heterostructures. The materials produced from the above process showed high degrees of compositional control in both spatial dimensions and chemical structure. Characterization shows controlled fabrication of heterostructures, which may pave the way for future band gap engineering possibilities. In addition, Phosphorene based field effect transistors, photodetectors, and gas …


Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister Jan 2016

Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister

Senior Projects Spring 2016

This project is comprised of a set of parallel investigations, which share the common mo- tivation of increasing the efficiency of photovoltaics. First, the reader is introduced to core concepts of photovoltaic energy conversion via a semi-classical description of the phys- ical system. Second, a key player in photovoltaic efficiency calculations, the exciton, is discussed in greater quantum mechanical detail. The reader will be taken through a nu- merical derivation of the low-energy exciton states in various geometries, including a line segment, a circle and a sphere. These numerical calculations are done using Mathematica, a computer program which, due to …


Novel Bimetallic Plasmonic Nanomaterials, Ritesh Sachan May 2013

Novel Bimetallic Plasmonic Nanomaterials, Ritesh Sachan

Doctoral Dissertations

Plasmonic nanomaterials have attracted a lot of attention recently due to their application in various fields such as chemical and biological sensing, catalysis, energy harvesting and optical devices. However, there is a need to address several outstanding issues with these materials, including cost-effective synthesis, tunability in plasmonic characteristics, and long term stability. In this thesis, we have focused on bimetallic nanoparticles (NPs) of Ag and Co due to their immiscibility as well as their individual properties. First, a pulsed laser induced dewetting route was used to synthesize Ag-Co bimetallic plasmonic NPs. An synthesis parameter space was derived to show the …


Carbon Nitride And Conjugated Polymer Composite Materials, Josh Byers Mar 2013

Carbon Nitride And Conjugated Polymer Composite Materials, Josh Byers

Electronic Thesis and Dissertation Repository

The semiconductor and photovoltaic properties of carbon nitride (CNx) thin films prepared using a reactive magnetron sputtering technique were investigated both individually and as composites with the organic conjugated polymers polybithiophene (PBT) and poly(3-hextlthiophene) (P3HT). At low nitrogen content, the film structure was dominated by graphitic sp2 percolation networks, whereas at higher nitrogen contents CNx films started to demonstrate semiconductor properties, as evidenced by the occurrence of photoconductivity and the development of a space charge region. When CNx was deposited onto a PBT substrate, it was found to function as an acceptor material improving the photocurrent generation both in …


Morphology-Properties Studies In Laser Synthesized Nanostructured Materials, Nozomi Shirato Aug 2012

Morphology-Properties Studies In Laser Synthesized Nanostructured Materials, Nozomi Shirato

Doctoral Dissertations

Synthesis of well-defined nanostructures by pulsed laser melting is an interesting subject from both a funda- mental and technological point of view. In this thesis, the synthesis and functional properties of potentially useful materials were studied, such as tin dioxide nanostructured arrays, which have potential applications in hydrogen gas sensing, and ferromagnetic Co nanowire and nanomagnets, which are fundamentally im- portant towards understanding magnetism in the nanoscale. First, the formation of 1D periodic tin dioxide nanoarrays was investigated with the goal of forming nanowires for hydrogen sensing. Experimental obser- vations combined with theoretical modeling successfully explained the mechanisms of structure …


The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride Jun 2012

The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride

Master's Theses

Previous research in InGaN/GaN light emitting diodes (LEDs) employing semi-classical drift-diffusion models has used reduced polarization constants without much physical explanantion. This paper investigates possible physical explanations for this effective polarization reduction in InGaN LEDs through the use of the simulation software SiLENSe. One major problem of current LED simulations is the assumption of perfectly discrete transitions between the quantum well (QW) and blocking layers when experiments have shown this to not be the case. The In concentration profile within InGaN multiple quantum well (MQW) devices shows much smoother and delayed transitions indicative of indium diffusion and drift during …


Mott Transition And Electronic Structure In Complex Oxide Heterostructures, Jian Liu May 2012

Mott Transition And Electronic Structure In Complex Oxide Heterostructures, Jian Liu

Graduate Theses and Dissertations

Strongly correlated electron systems, particularly transition metal oxides, have been a focus of condensed matter physics for more than two decades since the discovery of high-temperature superconducting cuprates. Diverse competing phases emerge, spanning from exotic magnetism to unconventional superconductivity, in proximity to the localized-itinerant transition of Mott insulators. While studies were concentrated on bulk crystals, the recent rapid advance in synthesis has enabled fabrication of high-quality oxide heterostructures, offering a new route to create novel artificial quantum materials.

This dissertation details the investigation on ultrathin films and heterostructures of 3d7(t2g6eg1) systems with …


Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim Sep 2011

Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim

Electronic Thesis and Dissertation Repository

The discovery of graphene - a 2D material with superior physical properties - in 2004 was important for the intensive global research to find alternatives to three-dimensional (3D) semiconductor materials in industry. At the same time there have been exciting advances for 2D magnetic materials on the nanometer scale. The superior properties of graphene are mainly attributed to its crystal structure and its relatively short-range interactions. These properties show that natural and artificial 2D materials are promising for new applications.

In this thesis we have carried out a comprehensive investigation of the effects of the 2D lattice structures, the roles …


Chemical And Electronic Structure Of Surfaces And Interfaces In Compound Semiconductors, Sujitra Pookpanratana Dec 2010

Chemical And Electronic Structure Of Surfaces And Interfaces In Compound Semiconductors, Sujitra Pookpanratana

UNLV Theses, Dissertations, Professional Papers, and Capstones

The interface formation between two different materials is important in applications for optoelectronic devices. Often, the success or performance of these devices is dependent on the formation of these heterojunctions. In this work, the surface and interfaces in such materials for optoelectronic devices are investigated by a suite of X-ray analytical techniques including X-ray photoelectron (XPS), X-ray excited Auger electron (XAES), and X-ray emission (XES) spectroscopies to provide novel insight.

For the group III-nitrides (e.g., AlxGa1-xN) used in many light emitting devices, a significant challenge exists to form an Ohmic contact. The electron affinities and band gaps of GaN and …