Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biological and Chemical Physics

Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor May 2019

Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor

Senior Theses

Complexity is prevalent both in natural and in human-made systems, yet is not well understood quantitatively. Qualitatively, complexity describes a phenomena in which a system composed of individual pieces, each having simple interactions with one another, results in interesting bulk properties that would otherwise not exist. One example of a complex biological system is the bird flock, in particular, a starling murmuration. Starlings are known to move in the direction of their neighbors and avoid collisions with fellow starlings, but as a result of these simple movement choices, the flock as a whole tends to exhibit fluid-like movements and form …


The Computational Study Of Fly Swarms & Complexity, Austin Bebee May 2018

The Computational Study Of Fly Swarms & Complexity, Austin Bebee

Senior Theses

A system is considered complex if it is composed of individual parts that abide by their own set of rules, while the system, as a whole, will produce non-deterministic properties. This prevents the behavior of such systems from being accurately predicted. The motivation for studying complexity spurs from the fact that it is a fundamental aspect of innumerable systems. Among complex systems, fly swarms are relatively simple, but even so they are still not well understood. In this research, several computational models were developed to assist with the understanding of fly swarms. These models were primarily analyzed by using the …


Thin Film Thermal Deposition At Various Pressures, James Kela Yee Keen Grace May 2017

Thin Film Thermal Deposition At Various Pressures, James Kela Yee Keen Grace

Senior Theses

This research was to verify the hypothesis that resistivity of metal's thin film deposited in a low-pressure environment is the same as its solid material. Thermal Evaporation is a thin film deposition technique in which metal inside a vacuum is evaporated, then deposited onto a surface. Higher quality metal films are deposited when the vacuum pressure is lower. At higher pressures, more air molecules are trapped within the layers of metal, thus increasing scattering sites and increasing the resistance. However, reaching a lower pressure requires more time and effort. In this research, films were deposited at various pressures and resistivities …


Building And Validating A Model For Investigating The Dynamics Of Isolated Water Molecules, Grant Cates May 2017

Building And Validating A Model For Investigating The Dynamics Of Isolated Water Molecules, Grant Cates

Senior Theses

Understanding how water molecules behave in isolation is vital to understand many fundamental processes in nature. To that end, scientists have begun studying crystals in which single water molecules become trapped in regularly occurring cavities in the crystal structure. As part of that investigation, numerical models used to investigate the dynamics of isolated water molecules are sought to help bolster our fundamental understanding of how these systems behave. To that end, the efficacy of three computational methods—the Euler Method, the Euler-Aspel Method and the Beeman Method—is compared using a newly defined parameter, called the predictive stability coefficient ρ. This …


Expanded Parameters In The Self-Organized Critical Forest Fire Model, Riley Self Jun 2016

Expanded Parameters In The Self-Organized Critical Forest Fire Model, Riley Self

Senior Theses

The forest fire model has been used to test the theory of Self-Organized Criticality as a model of complexity. The goal is to search for scale invariance in randomly generated forest fires using a computer simulation. In a previous model by B. Drossel and F. Schwabl,1 power-law behavior was seen when the nearest neighbors to a tree on fire catch on fire, and it has been assumed that if further trees also catch fire, then it will still exhibit self-organized criticality, showing scale invariance. Testing this assumption aids to the exploration of the applicability of self-organized criticality because the …


Modeling The Behavior Of The Graphene To Liquid Interfaces In An Electrolytic Liquid, Caitlin Duffner May 2016

Modeling The Behavior Of The Graphene To Liquid Interfaces In An Electrolytic Liquid, Caitlin Duffner

Senior Theses

Understanding the mechanism for charge transfer between a graphene biosensor and its electrodes within an electrolyte solution is vital to better understand the sources of electrical noise in the system. By measuring the effective resistance and capacitance of the system at different frequencies, it is possible to develop a circuit model of the system's electrical behavior. This model provides a deeper understanding of the fundamental interactions that occur in a top-­gated graphene device and provides opportunities to improve a signal. To reduce noise created at the liquid to graphene interface, a buffer layer of Yttrium Oxide was applied. While the …


Effect Of Electrolyte Concentration On The Capacitance And Mobility Of Graphene, Flint A. Martino May 2016

Effect Of Electrolyte Concentration On The Capacitance And Mobility Of Graphene, Flint A. Martino

Senior Theses

The use of graphene field-effect transistors as a biosensor is increasingly being used to study biological phenomena, due to the sensitivity and low reactivity of graphene. To further improve sensitivity in biological environments, we examined how different salt concentrations affect the mobility of capacitance of the graphene. Samples were also measured after an annealing process. We report on the positive correlation between sensitivity and electrolyte concentration and speculate on methods to improve future detectors. Mobility of the device was found to change from 1.07*103cm2/ (V*s) in de-ionized water to 2.78*103cm2/ (V*s) in …


Modeling A Circuit That Represents An Electrolytic Solution At Different Concentrations, Daniel C. Miller Ii May 2016

Modeling A Circuit That Represents An Electrolytic Solution At Different Concentrations, Daniel C. Miller Ii

Senior Theses

Electrodes are often placed within bio samples in order to measure the electrical changes that occur within a system. In order to understand the information provided through the microelectrodes, this paper will describe an experiment to measure the capacitance and the resistance between two micro electrodes as an electrolyte becomes more concentrated. This resulted in a capacitance and a resistance that increased and decreased exponentially, respectively, as an electrolyte concentration increased logarithmically.


Protein Folding & Self-Organized Criticality, Arun Bajracharya May 2016

Protein Folding & Self-Organized Criticality, Arun Bajracharya

Senior Theses

Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is unknown. Experimental studies of the folding process are difficult as proteins are made of more than one subunit and possess a high degree of conformational flexibility. Theoretically, self-organized criticality (SOC) has provided a framework for understanding complex systems in various scientific disciplines through scale invariance and the associated "fractal" power law behavior. Evidence of this criticality phenomena has been found in neural systems, cell cultures, and anesthetized …


Measuring Charge Carrier Mobility In Graphene, Christina A. Harmon May 2015

Measuring Charge Carrier Mobility In Graphene, Christina A. Harmon

Senior Theses

This research reports measurements of electron mobility in Graphene Field Effect Transistors (GFET), gated with liquid. Mobility is a quantity describing how easily charge carriers move through a material. GFET biosensors have the greatest sensitivity when the mobility is high; therefore, increasing mobility should improve sensitivity of these and similar devices. An optimal method was established for preparing samples and taking measurements of a liquid-gate device. Sheet conductivity was measured using van der Pauw geometry and carrier density was determined from measurements of the liquid-gate capacitance. It is shown that mobility improves after the graphene surface is cleaned by an …


Does Protein Folding Exhibit Self-Organized Criticality?, Addison Wisthoff May 2014

Does Protein Folding Exhibit Self-Organized Criticality?, Addison Wisthoff

Senior Theses

Proteins are known to fold into tertiary structures that determine their functionality in living organisms. By understanding the general features of this folding process, that are independent of specific proteins, folding can be better understood. Self-organized critical systems exhibit behavior that scales with system size. In this project, I wrote a simulation of a simplistic three-dimensional cubic lattice protein model. The model consisted of only two different types of amino acids, one being hydrophobic and the other hydrophilic, known as the HP model. To identify self-organized criticality in proteins, there must be clear signs of power law behavior in the …