Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Linfield University

Amino acid

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biological and Chemical Physics

Protein Folding & Self-Organized Criticality, Arun Bajracharya May 2016

Protein Folding & Self-Organized Criticality, Arun Bajracharya

Senior Theses

Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is unknown. Experimental studies of the folding process are difficult as proteins are made of more than one subunit and possess a high degree of conformational flexibility. Theoretically, self-organized criticality (SOC) has provided a framework for understanding complex systems in various scientific disciplines through scale invariance and the associated "fractal" power law behavior. Evidence of this criticality phenomena has been found in neural systems, cell cultures, and anesthetized …


Does Protein Folding Exhibit Self-Organized Criticality?, Addison Wisthoff May 2014

Does Protein Folding Exhibit Self-Organized Criticality?, Addison Wisthoff

Senior Theses

Proteins are known to fold into tertiary structures that determine their functionality in living organisms. By understanding the general features of this folding process, that are independent of specific proteins, folding can be better understood. Self-organized critical systems exhibit behavior that scales with system size. In this project, I wrote a simulation of a simplistic three-dimensional cubic lattice protein model. The model consisted of only two different types of amino acids, one being hydrophobic and the other hydrophilic, known as the HP model. To identify self-organized criticality in proteins, there must be clear signs of power law behavior in the …