Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 31 - 32 of 32

Full-Text Articles in Biological and Chemical Physics

Wave Function For Harmonically Confined Electrons In Time-Dependent Electric And Magnetostatic Fields, Hong-Ming Zhu, Jin-Wang Chen, Xiao-Yin Pan, Viraht Sahni Jan 2014

Wave Function For Harmonically Confined Electrons In Time-Dependent Electric And Magnetostatic Fields, Hong-Ming Zhu, Jin-Wang Chen, Xiao-Yin Pan, Viraht Sahni

Publications and Research

We derive via the interaction “representation” the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field—the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement – the uniform electron gas – the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKTwave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide …


Wave Function For Time-Dependent Harmonically Confined Electrons In A Time-Dependent Electric Field, Yu-Qi Li, Xiao-Yin Pan, Viraht Sahni Sep 2013

Wave Function For Time-Dependent Harmonically Confined Electrons In A Time-Dependent Electric Field, Yu-Qi Li, Xiao-Yin Pan, Viraht Sahni

Publications and Research

The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.