Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biological and Chemical Physics

Using Protonation Microstates And Hydrogen Bond Networks To Track Proton Transfer Pathways In Complex I, Umesh Khaniya Sep 2022

Using Protonation Microstates And Hydrogen Bond Networks To Track Proton Transfer Pathways In Complex I, Umesh Khaniya

Dissertations, Theses, and Capstone Projects

Complex I, NADH-ubiquinone oxidoreductase, is the first enzyme in the mitochondrial and bacterial aerobic respiratory chain. It pumps four protons through four transiently open pathways from the high pH, negative, N- side of the membrane to the positive, P-side driven by the exergonic transfer of electrons from NADH to a quinone. Three protons transfer through subunits descended from Mrp antiporters, while the fourth, E-channel is unique. Because of the complex possible paths thorough the many buried polar residues and lack of high-resolution crystal structure, the path for protons through the E-channel is elusive.

In this dissertation, the E-channel proton pumping …


Protein Motifs For Proton Transfers That Build The Transmembrane Proton Gradient, Divya Kaur, Umesh Khaniya, Yingying Zhang, M. R. Gunner Jun 2021

Protein Motifs For Proton Transfers That Build The Transmembrane Proton Gradient, Divya Kaur, Umesh Khaniya, Yingying Zhang, M. R. Gunner

Publications and Research

Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome …