Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biophysics

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 68

Full-Text Articles in Biological and Chemical Physics

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Langevin Dynamic Models For Smfret Dynamic Shift, David Frost, Keisha Cook Dr, Hugo Sanabria Dr Nov 2023

Langevin Dynamic Models For Smfret Dynamic Shift, David Frost, Keisha Cook Dr, Hugo Sanabria Dr

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Analysis Of Biologically Effective Dose For Retroactive Yttrium-90 Trans-Arterial Radioembolization Treatment Optimization, Mj Lindsey Jan 2023

Analysis Of Biologically Effective Dose For Retroactive Yttrium-90 Trans-Arterial Radioembolization Treatment Optimization, Mj Lindsey

CMC Senior Theses

Trans-arterial radioembolization (TARE) is a protracted modality of radiation therapy where radionuclides labeled with Yttrium-90 (90Y) are inserted inside a patient's hepatic artery to treat hepatocellular carcinoma (HCC). While TARE has been shown to be a clinically effective and safe treatment, there is little understanding of the radiobiological relationship between absorbed dose and tissue response, and thus there is no dosimetric standard for treatment planning. The Biologically Effective Dose (BED) formalism, derived from the Linear-Quadratic model of radiobiology, is used to weigh the absorbed dose by the time pattern of delivery. BED is a virtual dose that can …


Cell Division Dynamics Of Escherichia Coli In Extreme Environments, Steven P. Murray Dec 2022

Cell Division Dynamics Of Escherichia Coli In Extreme Environments, Steven P. Murray

Graduate Theses and Dissertations

Life is remarkable in how resilient it can be. Many organism, classified as ex- tremophiles, can not only survive in extreme environments, but they can thrive in them. In the search for extraterrestrial life, the best candidates to harbor life exist with some kind of extreme condition. Europa, for example, is a favorite for the possibility of accommodating life as we know it within our solar system. Thought there is believed to be a liquid ocean under its icy surface, this habitat would be under immense pressures and high salinity. To best know where to look for extraterrestrial life, it …


The Role Of Conformational Changes In Viral And Bacterial Protein Functions, Md Lokman Hossen Jun 2022

The Role Of Conformational Changes In Viral And Bacterial Protein Functions, Md Lokman Hossen

FIU Electronic Theses and Dissertations

Proteins do versatile work in cells. They require a cascade of structural changes to perform different tasks like binding to the other neighboring biomolecules, transporting small chemicals, activating a chemical reaction, etc. The structural conformations of proteins can be critical in changing their working ability. In this dissertation, I investigated the role of conformational changes of viral protein, e.g., spike and envelope protein of SARS-CoV-2, and bacterial protein, e.g., multidrug transporter and toxic extrusion protein- PfMATE from Pyrococcus furiosus. Also, I performed molecular docking-based drug screening targeting the E protein to suggest a set of drugs that can be repurposed …


Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer Jun 2022

Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer

Dissertations, Theses, and Capstone Projects

The description of a complex system like gene regulation of a cell or a brain of an animal in terms of the dynamics of each individual element is an insurmountable task due to the complexity of interactions and the scores of associated parameters. Recent decades brought about the description of these systems that employs network models. In such models the entire system is represented by a graph encapsulating a set of independently functioning objects and their interactions. This creates a level of abstraction that makes the analysis of such large scale system possible. Common practice is to draw conclusions about …


Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar May 2022

Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar

All Dissertations

An Optical tweezer is a tightly focused laser beam that applies and senses precise and localized optical force to a dielectric microsphere and offers a unique and effective tool for manipulating the single cell or cell components, including nucleotides and dynein motor proteins. Here, I used highly stabilized optomechanical components and ultra-sensitive detection modules to significantly improve the measurement capabilities over a wide range of temporal and spatial scales. I combined the optical tweezer-based force spectroscopy technique with fluorescence microscopy to develop an integrated high-resolution force-fluorescence system capable of measuring displacements at sub-nanometer, forces at sub-piconewton over a temporal range …


Ongoing Calculus In The Cerebral Cortex, Luke Long May 2022

Ongoing Calculus In The Cerebral Cortex, Luke Long

Physics Undergraduate Honors Theses

Various modes of neuronal computations have long been theorized to be possible based on the structure and geometry of the brain. These computations also seem necessary for many of the integral functions of the brain, like information processing and regulatory processes in the body. However, experimental data directly supporting these claims have been rare.

In this study, data collected in mice from a large number of neurons over a long period of time provided the opportunity to search for some of these computations, specifically change detection and squaring calculations. Using Matlab, the goal of this analysis was to find statistically …


Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii May 2022

Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii

All Dissertations

Proteins, RNA, and DNA serve as the primary sub-cellular machinery that give rise to the necessary functions of life. The long-standing paradigm has been that the structures of biomolecules, or the arrangement of the subunits that make up a biomolecule, determine biological function. However, biomolecules are not static objects. Instead, they often undergo structural rearrangements that are crucial to enabling and regulating their functions. In my thesis I present several studies of the interplay between the structures, dynamics, and functions of biomolecules that combine experimental fluorescence spectroscopy and computational methods to probe these systems at the single-molecule level. In particular, …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Bridging The 12-6-4 Model And The Fluctuating Charge Model, Pengfei Li Jul 2021

Bridging The 12-6-4 Model And The Fluctuating Charge Model, Pengfei Li

Chemistry: Faculty Publications and Other Works

Metal ions play important roles in various biological systems. Molecular dynamics (MD) using classical force field has become a popular research tool to study biological systems at the atomic level. However, meaningful MD simulations require reliable models and parameters. Previously we showed that the 12-6 Lennard-Jones nonbonded model for ions could not reproduce the experimental hydration free energy (HFE) and ion-oxygen distance (IOD) values simultaneously when ion has a charge of +2 or higher. We discussed that this deficiency arises from the overlook of the ion-induced dipole interaction in the 12-6 model, and this term is proportional to 1/r …


Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye Jun 2021

Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye

Biology: Faculty Publications and Other Works

Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the …


Abhd5 Induced Morphological Changes On Model Membrane Systems, Nasser S. Junedi May 2021

Abhd5 Induced Morphological Changes On Model Membrane Systems, Nasser S. Junedi

Honors College Theses

Proper regulation of neutral lipid storage (lipogenesis) and release (lipolysis) are critical molecular processes localized to an organelle called the Lipid Droplet (LD). The LD consists of a core with neutral lipids such as triacylglycerols (TAGs) and sterol esters surrounded by a phospholipid monolayer. Dysregulation of the processes localized to the LD are involved in the pathology of various diseases such as Neutral Lipid Storage Disease, diabetes, stroke and cancer. The non-enzymatic protein ABHD5 (α-β Hydrolase Domain-Containing Protein 5), is thought to play a key role in the process of lipolysis by forming homo-oligomers on the surface of the LD …


Synthetic Heterosynaptic Plasticity Enhances The Versatility Of Memristive Systems Emulating Bio-Synapse Structure And Function, William T. Mcclintic May 2021

Synthetic Heterosynaptic Plasticity Enhances The Versatility Of Memristive Systems Emulating Bio-Synapse Structure And Function, William T. Mcclintic

Doctoral Dissertations

Memristive systems occur in nature and are hallmarked via pinched hysteresis, the difference in the forward and reverse pathways for a given phenomenon. For example, neurons of the human brain are composed of synapses which apply the properties of memristance for neuronal communication, learning, and memory consolidation. Modern technology has much to gain from the characteristics of memristive systems, including lower power operation, on-chip memory, and bio-inspired computing. What is more, a relationship between memristive systems and synaptic plasticity exists and can be investigated focusing on homosynaptic and heterosynaptic plasticity. Where homosynaptic plasticity applies to interactions between neurons at a …


Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen Feb 2021

Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen

Dissertations, Theses, and Capstone Projects

To create an efficient de novo photosynthetic protein it is important to create long lived charge separated states. Achieving stable charge separation leads to an increase in the efficiency of the photosynthetic reaction which in turn leads to higher yields of end products, such as biofuels, electrical charge, or synthetic chemicals. In an attempt to create charge separated states in de novo proteins we hypothesized that we could engineer the free energy gaps in the proteins from excited primary donor (PD) to acceptor (A), and A back to ground state PD such that the forward electron transfer (ET) would be …


Monitoring Stem Cell Differentiation Using Raman Microspectroscopy: Chondrogenic Differentiation, Towards Cartilage Formation, Francesca Ravera, Esen Efeoglu, Hugh Byrne Jan 2021

Monitoring Stem Cell Differentiation Using Raman Microspectroscopy: Chondrogenic Differentiation, Towards Cartilage Formation, Francesca Ravera, Esen Efeoglu, Hugh Byrne

Articles

Mesenchymal Stem Cells (MSCs) have the ability to differentiate into chondrocytes, the only cellular components of cartilage and are therefore ideal candidates for cartilage and tissue repair technologies. Chondrocytes are surrounded by cartilage-like extracellular matrix (ECM), a complex network rich in glycosaminoglycans, proteoglycans, and collagen, which, together with a multitude of intracellular signalling molecules, trigger the chondrogenesis and allow the chondroprogenitor to acquire the spherical morphology of the chondrocytes. However, although the mechanisms of the differentiation of MSCs have been extensively explored, it has been difficult to provide a holistic picture of the process, in situ. Raman Micro Spectroscopy (RMS) …


Modeling Disorder In Proteins Yields Insights Into The Evolution Of Stability And Function, Jonathan Huihui Jan 2021

Modeling Disorder In Proteins Yields Insights Into The Evolution Of Stability And Function, Jonathan Huihui

Electronic Theses and Dissertations

The central dogma of molecular biology dictates that a DNA sequence codes for an RNA sequence, which in turn codes for a sequence of amino acids that comprises a protein. Proteins are responsible with performing myriad functions within living organisms and most proteins require a folded structure in order to perform their function. The protein's structure is the direct link from sequence to function. This is known as the sequence - structure - function paradigm. However, this does not mean that the unfolded state is unimportant. In order to properly model the stability of the folded state, one needs to …


The Effects Of Increasing Positively Charged Metal Ions Within Synovial Fluid, Kandisi Anyabwile Jan 2021

The Effects Of Increasing Positively Charged Metal Ions Within Synovial Fluid, Kandisi Anyabwile

Williams Honors College, Honors Research Projects

Osteoarthritis is a degenerative joint disease that affects 10% of men and 13% of women over age of 60. It is the degradation of the cartilage between two bones; obesity, age, overuse, or injury are major contributors to the development of this disease. The joint is incapsulated by the synovial sac filled with a viscous solution that aids in lubrication referred to as synovial fluid. If the synovial sac is ruptured due to injury, positive ions (K+, Na+, Ca2+, and Fe3+) may affect viscoelastic properties within the sac. The purpose of this …


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace Dec 2020

Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace

Electronic Theses and Dissertations

Influenza virus, colloquially known as the flu, is an acute respiratory disease that infects several millions of individuals each year in the U.S. and kills tens of thousands of those infected. Yearly viral vaccines are widely available, however, due to the virus’s high mutation rate, their efficacy varies greatly. Due to the variability in vaccine efficiency against seasonal influenza, and the potential for even more pathogenic versions of influenza to emerge at any time, there is a high demand for a universal treatment option.

Influenza virus hijacks a variety of host cell components in order to replicate. The glycoprotein hemagglutinin …


Circuits With Broken Fibration Symmetries Perform Core Logic Computations In Biological Networks, Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, Hernán A. Makse Jun 2020

Circuits With Broken Fibration Symmetries Perform Core Logic Computations In Biological Networks, Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, Hernán A. Makse

Publications and Research

We show that logic computational circuits in gene regulatory networks arise from a fibration symmetry breaking in the network structure. From this idea we implement a constructive procedure that reveals a hierarchy of genetic circuits, ubiquitous across species, that are surprising analogues to the emblematic circuits of solid-state electronics: starting from the transistor and progressing to ring oscillators, current-mirror circuits to toggle switches and flip-flops. These canonical variants serve fundamental operations of synchronization and clocks (in their symmetric states) and memory storage (in their broken symmetry states). These conclusions introduce a theoretically principled strategy to search for computational building blocks …


Proton Pumping Mechanism In Cytochrome C Oxidase, Xiuhong Cai Jun 2020

Proton Pumping Mechanism In Cytochrome C Oxidase, Xiuhong Cai

Dissertations, Theses, and Capstone Projects

Cytochrome c Oxidase (CcO), is the terminal electron acceptor in the membrane bound aerobic respiratory chain. It reduces O2 to water. The energy released by this reaction is stored by pumping protons from the high pH, N-side of the membrane to the low pH, P-side. The generated proton gradient provides the motive force for synthesis of ATP by the ATP synthase.

Building a proton gradient across the membrane requires that proton transport must occur along controllable proton pathways to prevent proton leakage to the N-side. It has been suggested that CcO function requires proton transfer channels in both the …


Quantification Of Interactions Between Influenza Hemagglutinin And Host Cell Phosphoinositides By Super-Resolution Microscopy, Matthew T. Parent May 2020

Quantification Of Interactions Between Influenza Hemagglutinin And Host Cell Phosphoinositides By Super-Resolution Microscopy, Matthew T. Parent

Electronic Theses and Dissertations

The influenza viral membrane protein hemagglutinin (HA) forms dense nanoscale clusters on host cell plasma membranes (PM), but the mechanisms that direct HA clustering are not well understood. Previous studies have observed HA associated with actin rich regions of the PM, but there are no known direct interactions between HA and actin. Phosphatidylinositol 4,5-biphosphate (PIP2) is a signaling lipid in the PM which can regulate the actin cytoskeleton, and actin comets initiated by PIP2 are known to be exploited by HA to reach the PM of infected cells. PIP2 is also used by other viruses, such as HIV and Ebola, …


Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse Mar 2020

Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse

Publications and Research

A major ambition of systems science is to uncover the building blocks of any biological network to decipher how cellular function emerges from their interactions. Here, we introduce a graph representation of the information flow in these networks as a set of input trees, one for each node, which contains all pathways along which information can be transmitted in the network. In this representation, we find remarkable symmetries in the input trees that deconstruct the network into functional building blocks called fibers. Nodes in a fiber have isomorphic input trees and thus process equivalent dynamics and synchronize their activity. Each …


Examining Artifacts Of The Watershed Segmentation, Emily Jo Armitage Jan 2020

Examining Artifacts Of The Watershed Segmentation, Emily Jo Armitage

Electronic Theses and Dissertations

The watershed segmentation is an algorithm used to systematically track cell intercalary behaviors during germ band extension of the Drosophila embryo. Neighboring cells share a contracting vertical interface, called a T1, which continues contracting to a single point, a T2, and extending in the horizontal direction to create what is called a T3 interface (Fig. 1). Additionally, higher order vertices called rosettes occur when five or more cells meet at a common vertex. Simulated T2 events demonstrate that cell angle and not noise level in the image contributes to the incorrect detection of artifactual T1s in more acute angled cells …


Quantification Of Dynamic Epithelial Sheet Architecture In Botryllus Schlosseri Using 2-D & 3-D Image Analysis, Roopa Madhu Jan 2020

Quantification Of Dynamic Epithelial Sheet Architecture In Botryllus Schlosseri Using 2-D & 3-D Image Analysis, Roopa Madhu

Electronic Theses and Dissertations

Epithelial tubules form critical structures in various body tissues; how- ever, since they are difficult to access experimentally, their architecture and dynamics are not well understood. Here we examine the dynamic remodeling of epithelial tubes in vivo using a novel and uniquely accessible model system: the extracorporeal vasculature of Botryllus schlosseri (sea squirt). In Botryllus, massive retraction of blood vessels can be triggered without loss of barrier function, through (i) disrupting collagen crosslinking in the basement membrane using β-aminopropionitrile (BAPN); or (ii) disrupting the integrin pathway through inhibition of focal adhesion kinase (FAK). We performed stereographic projections of 3-dimensional …


Special Issue On The Third Workshop On Biological Mentality, Kenneth A. Augustyn Jan 2020

Special Issue On The Third Workshop On Biological Mentality, Kenneth A. Augustyn

Michigan Tech Publications

The Third Workshop on Biological Mentality was held from September 23, 2019 to March 2, 2020 as a series of twenty-one Monday online conferencing sessions, each consisting of a talk followed by a Q&A discussion. Like the two previous workshops [1, 2], the objective of this workshop was to seek a deeper level of understanding the physical foundations of biological mentality (whether conscious or nonconscious).


Odx: A Fitness Tracker-Based Device For Continuous Bacterial Growth Monitoring, Venkata V.B. Yallapragada, Uday Gowda, David Wong, Liam O'Faolain, Mark Tangney, Ganga C.R. Devarapu Sep 2019

Odx: A Fitness Tracker-Based Device For Continuous Bacterial Growth Monitoring, Venkata V.B. Yallapragada, Uday Gowda, David Wong, Liam O'Faolain, Mark Tangney, Ganga C.R. Devarapu

Cappa Publications

Continuous monitoring of bacterial growth in aqueous media is a crucial process in academic research as well as in the biotechnology industry. Bacterial growth is usually monitored by measuring the optical density of bacteria in liquid media, using benchtop spectrophotometers. Due to the large form factor of the existing spectrophotometers, they cannot be used for live monitoring of the bacteria inside bacterial incubation chambers. Additionally, the use of benchtop spectrometers for continuous monitoring requires multiple samplings and is labour intensive. To overcome these challenges, we have developed an optical density measuring device (ODX) by modifying a generic fitness tracker. The …


Characterization Of The Motion Of Cellulose Synthase Protein Complexes In The Plant Cell Membrane, Nina Zehfroosh Mar 2019

Characterization Of The Motion Of Cellulose Synthase Protein Complexes In The Plant Cell Membrane, Nina Zehfroosh

Doctoral Dissertations

The polysaccharide cellulose is the main component of plant cell walls, so it is the most abundant polymer on Earth. While it is widely used in industry due to its remarkable properties, such as renewability and biodegradability, its biosynthesis is still not well understood. The large transmembrane protein Cellulose Synthase Complex (CSC) is responsible for synthesizing cellulose by polymerizing UDP glucose into the constituent glucan chains of cellulose. In this project, I used variable angle epi-fluorescence microscopy (VAEM) in combination with single-particle tracking to characterize the motion of GFP labeled CSCs in the hypocotyl of Arabidopsis thaliana (A. thaliana …